Siddharth Sonti, Chenghan Sun, Zekun Chen, Robert Michael Kowalski, Joseph S. Kowalski, Davide Donadio, Surl-Hee Ahn, Ambarish R. Kulkarni
{"title":"沸石束缚金纳米团簇的稳定性和动态性","authors":"Siddharth Sonti, Chenghan Sun, Zekun Chen, Robert Michael Kowalski, Joseph S. Kowalski, Davide Donadio, Surl-Hee Ahn, Ambarish R. Kulkarni","doi":"10.1021/acs.jctc.4c00978","DOIUrl":null,"url":null,"abstract":"Nanoengineered metal@zeolite materials have recently emerged as a promising class of catalysts for several industrially relevant reactions. These materials, which consist of small transition metal nanoclusters confined within three-dimensional zeolite pores, are interesting because they show higher stability and better sintering resistance under reaction conditions. While several such hybrid catalysts have been reported experimentally, key questions such as the impact of the zeolite frameworks on the properties of the metal clusters are not well understood. To address such knowledge gaps, in this study, we report a robust and transferable machine learning-based potential (MLP) that is capable of describing the structure, stability, and dynamics of zeolite-confined gold nanoclusters. Specifically, we show that the resulting MLP maintains <i>ab initio</i> accuracy across a range of temperatures (300–1000 K) and can be used to investigate time scales (>10 ns), length scales (ca. 10,000 atoms), and phenomena (e.g., ensemble-averaged stability and diffusivity) that are typically inaccessible using density functional theory (DFT). Taken together, this study represents an important step in enabling the rational theory-guided design of metal@zeolite catalysts.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Dynamics of Zeolite-Confined Gold Nanoclusters\",\"authors\":\"Siddharth Sonti, Chenghan Sun, Zekun Chen, Robert Michael Kowalski, Joseph S. Kowalski, Davide Donadio, Surl-Hee Ahn, Ambarish R. Kulkarni\",\"doi\":\"10.1021/acs.jctc.4c00978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoengineered metal@zeolite materials have recently emerged as a promising class of catalysts for several industrially relevant reactions. These materials, which consist of small transition metal nanoclusters confined within three-dimensional zeolite pores, are interesting because they show higher stability and better sintering resistance under reaction conditions. While several such hybrid catalysts have been reported experimentally, key questions such as the impact of the zeolite frameworks on the properties of the metal clusters are not well understood. To address such knowledge gaps, in this study, we report a robust and transferable machine learning-based potential (MLP) that is capable of describing the structure, stability, and dynamics of zeolite-confined gold nanoclusters. Specifically, we show that the resulting MLP maintains <i>ab initio</i> accuracy across a range of temperatures (300–1000 K) and can be used to investigate time scales (>10 ns), length scales (ca. 10,000 atoms), and phenomena (e.g., ensemble-averaged stability and diffusivity) that are typically inaccessible using density functional theory (DFT). Taken together, this study represents an important step in enabling the rational theory-guided design of metal@zeolite catalysts.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00978\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00978","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Stability and Dynamics of Zeolite-Confined Gold Nanoclusters
Nanoengineered metal@zeolite materials have recently emerged as a promising class of catalysts for several industrially relevant reactions. These materials, which consist of small transition metal nanoclusters confined within three-dimensional zeolite pores, are interesting because they show higher stability and better sintering resistance under reaction conditions. While several such hybrid catalysts have been reported experimentally, key questions such as the impact of the zeolite frameworks on the properties of the metal clusters are not well understood. To address such knowledge gaps, in this study, we report a robust and transferable machine learning-based potential (MLP) that is capable of describing the structure, stability, and dynamics of zeolite-confined gold nanoclusters. Specifically, we show that the resulting MLP maintains ab initio accuracy across a range of temperatures (300–1000 K) and can be used to investigate time scales (>10 ns), length scales (ca. 10,000 atoms), and phenomena (e.g., ensemble-averaged stability and diffusivity) that are typically inaccessible using density functional theory (DFT). Taken together, this study represents an important step in enabling the rational theory-guided design of metal@zeolite catalysts.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.