具有单元选择性耦合簇的局部主动空间法

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-09-10 DOI:10.1021/acs.jctc.4c00528
Abhishek Mitra, Ruhee D’Cunha, Qiaohong Wang, Matthew R. Hermes, Yuri Alexeev, Stephen K. Gray, Matthew Otten, Laura Gagliardi
{"title":"具有单元选择性耦合簇的局部主动空间法","authors":"Abhishek Mitra, Ruhee D’Cunha, Qiaohong Wang, Matthew R. Hermes, Yuri Alexeev, Stephen K. Gray, Matthew Otten, Laura Gagliardi","doi":"10.1021/acs.jctc.4c00528","DOIUrl":null,"url":null,"abstract":"We introduce a hybrid quantum-classical algorithm, the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. Derived from the localized active space unitary coupled cluster (LAS-UCCSD) method, LAS-USCCSD first performs a classical LASSCF calculation, then selectively identifies the most important parameters (cluster amplitudes used to build the multireference UCC ansatz) for restoring interfragment interaction energy using this reduced set of parameters with the variational quantum eigensolver method. We benchmark LAS-USCCSD against LAS-UCCSD by calculating the total energies of (H<sub>2</sub>)<sub>2</sub>, (H<sub>2</sub>)<sub>4</sub>, and <i>trans</i>-butadiene, and the magnetic coupling constant for a bimetallic compound [Cr<sub>2</sub>(OH)<sub>3</sub>(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup>. For these systems, we find that LAS-USCCSD reduces the number of required parameters and thus the circuit depth by at least 1 order of magnitude, an aspect which is important for the practical implementation of multireference hybrid quantum-classical algorithms like LAS-UCCSD on near-term quantum computers.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Localized Active Space Method with Unitary Selective Coupled Cluster\",\"authors\":\"Abhishek Mitra, Ruhee D’Cunha, Qiaohong Wang, Matthew R. Hermes, Yuri Alexeev, Stephen K. Gray, Matthew Otten, Laura Gagliardi\",\"doi\":\"10.1021/acs.jctc.4c00528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a hybrid quantum-classical algorithm, the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. Derived from the localized active space unitary coupled cluster (LAS-UCCSD) method, LAS-USCCSD first performs a classical LASSCF calculation, then selectively identifies the most important parameters (cluster amplitudes used to build the multireference UCC ansatz) for restoring interfragment interaction energy using this reduced set of parameters with the variational quantum eigensolver method. We benchmark LAS-USCCSD against LAS-UCCSD by calculating the total energies of (H<sub>2</sub>)<sub>2</sub>, (H<sub>2</sub>)<sub>4</sub>, and <i>trans</i>-butadiene, and the magnetic coupling constant for a bimetallic compound [Cr<sub>2</sub>(OH)<sub>3</sub>(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup>. For these systems, we find that LAS-USCCSD reduces the number of required parameters and thus the circuit depth by at least 1 order of magnitude, an aspect which is important for the practical implementation of multireference hybrid quantum-classical algorithms like LAS-UCCSD on near-term quantum computers.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00528\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种量子-古典混合算法--局部有源空间单元选择性耦合簇单倍和双倍(LAS-USCCSD)方法。LAS-USCCSD 源自局部有源空间单元耦合簇(LAS-UCCSD)方法,它首先执行经典的 LASSCF 计算,然后利用变异量子等价求解器方法,选择性地确定最重要的参数(用于建立多参考 UCC 方解的簇振幅),以利用这组减少的参数恢复碎片间的相互作用能。我们通过计算 (H2)2、(H2)4 和反式丁二烯的总能量以及双金属化合物 [Cr2(OH)3(NH3)6]3+ 的磁耦合常数,将 LAS-USCCSD 与 LAS-UCCSD 进行了比较。对于这些系统,我们发现 LAS-USCCSD 减少了所需参数的数量,从而将电路深度降低了至少 1 个数量级,这对于在近期量子计算机上实际应用像 LAS-UCCSD 这样的多参考混合量子-经典算法非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Localized Active Space Method with Unitary Selective Coupled Cluster
We introduce a hybrid quantum-classical algorithm, the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. Derived from the localized active space unitary coupled cluster (LAS-UCCSD) method, LAS-USCCSD first performs a classical LASSCF calculation, then selectively identifies the most important parameters (cluster amplitudes used to build the multireference UCC ansatz) for restoring interfragment interaction energy using this reduced set of parameters with the variational quantum eigensolver method. We benchmark LAS-USCCSD against LAS-UCCSD by calculating the total energies of (H2)2, (H2)4, and trans-butadiene, and the magnetic coupling constant for a bimetallic compound [Cr2(OH)3(NH3)6]3+. For these systems, we find that LAS-USCCSD reduces the number of required parameters and thus the circuit depth by at least 1 order of magnitude, an aspect which is important for the practical implementation of multireference hybrid quantum-classical algorithms like LAS-UCCSD on near-term quantum computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Electron-Spin Relaxation in Boron-Doped Graphene Nanoribbons. Does the Traditional Band Picture Correctly Describe the Electronic Structure of n-Doped Conjugated Polymers? A TD-DFT and Natural Transition Orbital Study. Determining the N-Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling. Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol. How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1