Liangliang Liu , Qiang Zhang , Yan Wang , Zezheng Yan , Zhaoping Hou
{"title":"对 \"用熔盐法合成的具有高结晶度和化学稳定性的掺锂(K,Na)NbO3 粒子 \"的更正[Adv. Powder Technol.","authors":"Liangliang Liu , Qiang Zhang , Yan Wang , Zezheng Yan , Zhaoping Hou","doi":"10.1016/j.apt.2024.104650","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104650"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921883124003261/pdfft?md5=b3d25e3ac2cd4664878564879d228c40&pid=1-s2.0-S0921883124003261-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Corrigendum to “Li-doped (K, Na)NbO3 particles with high crystallinity and chemical stability synthesized by molten salt method” [Adv. Powder Technol. 35(9) (2024) 104580]\",\"authors\":\"Liangliang Liu , Qiang Zhang , Yan Wang , Zezheng Yan , Zhaoping Hou\",\"doi\":\"10.1016/j.apt.2024.104650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":\"35 11\",\"pages\":\"Article 104650\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0921883124003261/pdfft?md5=b3d25e3ac2cd4664878564879d228c40&pid=1-s2.0-S0921883124003261-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883124003261\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003261","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Corrigendum to “Li-doped (K, Na)NbO3 particles with high crystallinity and chemical stability synthesized by molten salt method” [Adv. Powder Technol. 35(9) (2024) 104580]
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)