优化自动无人机系统的结构检测路径规划

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-09-12 DOI:10.1016/j.autcon.2024.105764
Yuxiang Zhao , Benhao Lu , Mohamad Alipour
{"title":"优化自动无人机系统的结构检测路径规划","authors":"Yuxiang Zhao ,&nbsp;Benhao Lu ,&nbsp;Mohamad Alipour","doi":"10.1016/j.autcon.2024.105764","DOIUrl":null,"url":null,"abstract":"<div><p>Automation in Unmanned Aerial Systems (UAS)-based structural inspections has gained significant traction given the scale and complexity of infrastructure. A core problem in UAS-based inspection is electing an optimal flight path to achieve the mission objectives while minimizing flight time. This paper presents an effective two-stage method that guarantees coverage as a constraint to ensure damage detectability, while minimizing path length as an objective. A genetic algorithm first determines viewpoint positions, and a greedy algorithm calculates the camera poses, as opposed to directly optimizing all degrees of freedom (DOF) simultaneously. A sensitivity analysis demonstrates the range of applicability and superiority of this formulation over direct 5-DOF optimization by at least 30 % shorter path length. Applied examples, including focused and partial space inspections, are also presented, demonstrating the flexibility of the proposed method to meet real-world requirements. The results highlight the feasibility of the approach and contribute to incorporating automation into UAS-based structural inspections.</p></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105764"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926580524005004/pdfft?md5=95ccd71e68473fa7c00b9374cd09fe86&pid=1-s2.0-S0926580524005004-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimized structural inspection path planning for automated unmanned aerial systems\",\"authors\":\"Yuxiang Zhao ,&nbsp;Benhao Lu ,&nbsp;Mohamad Alipour\",\"doi\":\"10.1016/j.autcon.2024.105764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automation in Unmanned Aerial Systems (UAS)-based structural inspections has gained significant traction given the scale and complexity of infrastructure. A core problem in UAS-based inspection is electing an optimal flight path to achieve the mission objectives while minimizing flight time. This paper presents an effective two-stage method that guarantees coverage as a constraint to ensure damage detectability, while minimizing path length as an objective. A genetic algorithm first determines viewpoint positions, and a greedy algorithm calculates the camera poses, as opposed to directly optimizing all degrees of freedom (DOF) simultaneously. A sensitivity analysis demonstrates the range of applicability and superiority of this formulation over direct 5-DOF optimization by at least 30 % shorter path length. Applied examples, including focused and partial space inspections, are also presented, demonstrating the flexibility of the proposed method to meet real-world requirements. The results highlight the feasibility of the approach and contribute to incorporating automation into UAS-based structural inspections.</p></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105764\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005004/pdfft?md5=95ccd71e68473fa7c00b9374cd09fe86&pid=1-s2.0-S0926580524005004-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005004\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鉴于基础设施的规模和复杂性,基于无人机系统(UAS)的结构检测自动化已获得了显著的发展。基于无人机系统的检测的核心问题是选择最佳飞行路径,以实现任务目标,同时最大限度地减少飞行时间。本文提出了一种有效的两阶段方法,以保证覆盖范围为约束条件,确保损伤可探测性,同时以最小化路径长度为目标。与直接同时优化所有自由度 (DOF) 的方法相比,该方法首先采用遗传算法确定视点位置,然后采用贪婪算法计算摄像机姿势。灵敏度分析表明了这种方法的适用范围和优越性,与直接的 5-DOF 优化相比,路径长度至少缩短了 30%。此外,还介绍了一些应用实例,包括重点检查和部分空间检查,展示了所提方法的灵活性,以满足现实世界的要求。结果凸显了该方法的可行性,有助于将自动化纳入基于无人机系统的结构检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized structural inspection path planning for automated unmanned aerial systems

Automation in Unmanned Aerial Systems (UAS)-based structural inspections has gained significant traction given the scale and complexity of infrastructure. A core problem in UAS-based inspection is electing an optimal flight path to achieve the mission objectives while minimizing flight time. This paper presents an effective two-stage method that guarantees coverage as a constraint to ensure damage detectability, while minimizing path length as an objective. A genetic algorithm first determines viewpoint positions, and a greedy algorithm calculates the camera poses, as opposed to directly optimizing all degrees of freedom (DOF) simultaneously. A sensitivity analysis demonstrates the range of applicability and superiority of this formulation over direct 5-DOF optimization by at least 30 % shorter path length. Applied examples, including focused and partial space inspections, are also presented, demonstrating the flexibility of the proposed method to meet real-world requirements. The results highlight the feasibility of the approach and contribute to incorporating automation into UAS-based structural inspections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Construction safety inspection with contrastive language-image pre-training (CLIP) image captioning and attention Signs on glasses: LiDAR data voids, hotspot effect, and reflection artifacts Automated physics-based modeling of construction equipment through data fusion Automated daily report generation from construction videos using ChatGPT and computer vision Automated rule-based safety inspection and compliance checking of temporary guardrail systems in construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1