使用经过微调和提炼的预训练变压器模型的建筑规范问题解答框架

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-09-12 DOI:10.1016/j.autcon.2024.105730
Xiaorui Xue , Jiansong Zhang , Yunfeng Chen
{"title":"使用经过微调和提炼的预训练变压器模型的建筑规范问题解答框架","authors":"Xiaorui Xue ,&nbsp;Jiansong Zhang ,&nbsp;Yunfeng Chen","doi":"10.1016/j.autcon.2024.105730","DOIUrl":null,"url":null,"abstract":"<div><p>Building code compliance checking is considered a bottleneck in construction projects, which calls for a novel approach to building code query and information retrieval. To address this research gap, the paper presents a question and answering framework comprising: (1) a ‘retriever’ for efficient context retrieval from building codes in response to an inquiry, and (2) a ‘reader’ for precise context interpretation and answer generation. The ‘retriever’, based on the BM25 algorithm, achieved a top-1 precision, recall, and F1-score of 0.95, 0.95, and 0.95, and a top-5 precision, recall, and F1-score of 0.97, 1.00, and 0.99, respectively. The ‘reader’, utilizing the transformer-based <em>“xlm-roberta-base-squad2-distilled”</em> model, achieved a top-4 accuracy of 0.95 and a top-1 F1-score of 0.84. A fine-tuning and model distillation process was used and shown to provide high performance on limited amount of training data, overcoming a common barrier in the development of domain-specific (e.g., construction) deep learning models.</p></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105730"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Question-answering framework for building codes using fine-tuned and distilled pre-trained transformer models\",\"authors\":\"Xiaorui Xue ,&nbsp;Jiansong Zhang ,&nbsp;Yunfeng Chen\",\"doi\":\"10.1016/j.autcon.2024.105730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Building code compliance checking is considered a bottleneck in construction projects, which calls for a novel approach to building code query and information retrieval. To address this research gap, the paper presents a question and answering framework comprising: (1) a ‘retriever’ for efficient context retrieval from building codes in response to an inquiry, and (2) a ‘reader’ for precise context interpretation and answer generation. The ‘retriever’, based on the BM25 algorithm, achieved a top-1 precision, recall, and F1-score of 0.95, 0.95, and 0.95, and a top-5 precision, recall, and F1-score of 0.97, 1.00, and 0.99, respectively. The ‘reader’, utilizing the transformer-based <em>“xlm-roberta-base-squad2-distilled”</em> model, achieved a top-4 accuracy of 0.95 and a top-1 F1-score of 0.84. A fine-tuning and model distillation process was used and shown to provide high performance on limited amount of training data, overcoming a common barrier in the development of domain-specific (e.g., construction) deep learning models.</p></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105730\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524004667\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524004667","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

建筑规范合规性检查被认为是建筑项目中的一个瓶颈,这就需要一种新颖的建筑规范查询和信息检索方法。为了填补这一研究空白,本文提出了一个问题和答案框架,其中包括:(1) 一个 "检索器",用于针对查询从建筑规范中高效检索上下文;(2) 一个 "阅读器",用于精确解释上下文并生成答案。基于 BM25 算法的 "检索器 "在精确度、召回率和 F1 分数上分别达到了 0.95、0.95 和 0.95 的前 1 名,在精确度、召回率和 F1 分数上分别达到了 0.97、1.00 和 0.99 的前 5 名。阅读器 "采用了基于转换器的 "xlm-roberta-base-squad2-distilled "模型,前四名的准确率为 0.95,前一名的 F1 分数为 0.84。微调和模型蒸馏过程的使用表明,在有限的训练数据量上,该模型能提供高性能,克服了开发特定领域(如建筑)深度学习模型的常见障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Question-answering framework for building codes using fine-tuned and distilled pre-trained transformer models

Building code compliance checking is considered a bottleneck in construction projects, which calls for a novel approach to building code query and information retrieval. To address this research gap, the paper presents a question and answering framework comprising: (1) a ‘retriever’ for efficient context retrieval from building codes in response to an inquiry, and (2) a ‘reader’ for precise context interpretation and answer generation. The ‘retriever’, based on the BM25 algorithm, achieved a top-1 precision, recall, and F1-score of 0.95, 0.95, and 0.95, and a top-5 precision, recall, and F1-score of 0.97, 1.00, and 0.99, respectively. The ‘reader’, utilizing the transformer-based “xlm-roberta-base-squad2-distilled” model, achieved a top-4 accuracy of 0.95 and a top-1 F1-score of 0.84. A fine-tuning and model distillation process was used and shown to provide high performance on limited amount of training data, overcoming a common barrier in the development of domain-specific (e.g., construction) deep learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Construction safety inspection with contrastive language-image pre-training (CLIP) image captioning and attention Signs on glasses: LiDAR data voids, hotspot effect, and reflection artifacts Automated physics-based modeling of construction equipment through data fusion Automated daily report generation from construction videos using ChatGPT and computer vision Automated rule-based safety inspection and compliance checking of temporary guardrail systems in construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1