应用非线性三组分模型模拟聚合物-合金土工格室板材的加速蠕变行为

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-09-13 DOI:10.1016/j.geotexmem.2024.09.005
Yang Zhao , Hanqing Xiao , Ling Chen , Penghui Chen , Zheng Lu , Chuxuan Tang , Hailin Yao
{"title":"应用非线性三组分模型模拟聚合物-合金土工格室板材的加速蠕变行为","authors":"Yang Zhao ,&nbsp;Hanqing Xiao ,&nbsp;Ling Chen ,&nbsp;Penghui Chen ,&nbsp;Zheng Lu ,&nbsp;Chuxuan Tang ,&nbsp;Hailin Yao","doi":"10.1016/j.geotexmem.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>The polymer-alloy geocell sheets (PAGS) represent a novel geocell material developed to replace conventional geocell materials. Accelerated creep testing, a convenient and precise performance evaluation method, presents a viable alternative to traditional creep testing for obtaining long-term creep strains. Nonetheless, there is a lack of prediction and in-depth exploration of accelerated creep testing. This paper aims to assess the efficacy of using the non-linear three-component (NLTC) model to simulate the accelerated creep behavior of PAGS. The predictive accuracy of the NLTC model has undergone evaluation through a comparison between stepped isothermal method (SIM) accelerated creep experimental tests and numerical simulations. Subsequently, the validated NLTC model was employed to simulate the time-temperature superposition method (TTSM), time-stress superposition method (TSSM), and stepped isostress method (SSM) accelerated creep tests, thereby verifying its effectiveness in predicting all accelerated creep tests. The results indicate that the NLTC model can effectively simulate creep deformation induced by temperature increases, particularly the temperatures below 41 °C. Although some errors are observed at elevated temperatures, it is within the acceptable range of 17.4%. Numerical simulation results of TTSM, TSSM, and SSM tests also suggest the model's proficiency in simulating the accelerated creep behavior by temperature and creep load increasing.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 70-80"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the non-linear three-component model for simulating accelerated creep behavior of polymer-alloy geocell sheets\",\"authors\":\"Yang Zhao ,&nbsp;Hanqing Xiao ,&nbsp;Ling Chen ,&nbsp;Penghui Chen ,&nbsp;Zheng Lu ,&nbsp;Chuxuan Tang ,&nbsp;Hailin Yao\",\"doi\":\"10.1016/j.geotexmem.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The polymer-alloy geocell sheets (PAGS) represent a novel geocell material developed to replace conventional geocell materials. Accelerated creep testing, a convenient and precise performance evaluation method, presents a viable alternative to traditional creep testing for obtaining long-term creep strains. Nonetheless, there is a lack of prediction and in-depth exploration of accelerated creep testing. This paper aims to assess the efficacy of using the non-linear three-component (NLTC) model to simulate the accelerated creep behavior of PAGS. The predictive accuracy of the NLTC model has undergone evaluation through a comparison between stepped isothermal method (SIM) accelerated creep experimental tests and numerical simulations. Subsequently, the validated NLTC model was employed to simulate the time-temperature superposition method (TTSM), time-stress superposition method (TSSM), and stepped isostress method (SSM) accelerated creep tests, thereby verifying its effectiveness in predicting all accelerated creep tests. The results indicate that the NLTC model can effectively simulate creep deformation induced by temperature increases, particularly the temperatures below 41 °C. Although some errors are observed at elevated temperatures, it is within the acceptable range of 17.4%. Numerical simulation results of TTSM, TSSM, and SSM tests also suggest the model's proficiency in simulating the accelerated creep behavior by temperature and creep load increasing.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 70-80\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001079\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001079","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物合金土工格室板(PAGS)是一种新型土工格室材料,旨在取代传统的土工格室材料。加速蠕变试验是一种方便、精确的性能评估方法,是获得长期蠕变应变的传统蠕变试验的可行替代方法。然而,目前还缺乏对加速蠕变试验的预测和深入探讨。本文旨在评估使用非线性三组分(NLTC)模型模拟 PAGS 加速蠕变行为的有效性。通过比较阶跃等温法(SIM)加速蠕变实验测试和数值模拟,对 NLTC 模型的预测准确性进行了评估。随后,利用经过验证的 NLTC 模型模拟了时间-温度叠加法(TTSM)、时间-应力叠加法(TSSM)和阶跃等应力法(SSM)加速蠕变试验,从而验证了该模型在预测所有加速蠕变试验方面的有效性。结果表明,NLTC 模型能有效模拟温度升高引起的蠕变变形,尤其是温度低于 41 ℃ 时。虽然在温度升高时会出现一些误差,但误差在 17.4% 的可接受范围内。TTSM、TSSM 和 SSM 试验的数值模拟结果也表明,该模型能够熟练模拟温度和蠕变载荷增加引起的加速蠕变行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of the non-linear three-component model for simulating accelerated creep behavior of polymer-alloy geocell sheets

The polymer-alloy geocell sheets (PAGS) represent a novel geocell material developed to replace conventional geocell materials. Accelerated creep testing, a convenient and precise performance evaluation method, presents a viable alternative to traditional creep testing for obtaining long-term creep strains. Nonetheless, there is a lack of prediction and in-depth exploration of accelerated creep testing. This paper aims to assess the efficacy of using the non-linear three-component (NLTC) model to simulate the accelerated creep behavior of PAGS. The predictive accuracy of the NLTC model has undergone evaluation through a comparison between stepped isothermal method (SIM) accelerated creep experimental tests and numerical simulations. Subsequently, the validated NLTC model was employed to simulate the time-temperature superposition method (TTSM), time-stress superposition method (TSSM), and stepped isostress method (SSM) accelerated creep tests, thereby verifying its effectiveness in predicting all accelerated creep tests. The results indicate that the NLTC model can effectively simulate creep deformation induced by temperature increases, particularly the temperatures below 41 °C. Although some errors are observed at elevated temperatures, it is within the acceptable range of 17.4%. Numerical simulation results of TTSM, TSSM, and SSM tests also suggest the model's proficiency in simulating the accelerated creep behavior by temperature and creep load increasing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Influence of perforation characteristics and geotextile envelopes on the drain pipe An approximate solution of consolidation for double-layered ground with different smear radii by vertical drains Long-term performance of polyethylene geomembranes to contain brine Field behavior of a GRS bridge approach retaining wall on highly compressible foundation soils A model for predicting permeability of geotextile envelope for subsurface drainage after combined clogging in arid areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1