{"title":"人工智能驱动的解决方案,防止对移动车对微电网服务的恶意攻击","authors":"Ahmed Omara, Burak Kantarci","doi":"10.1016/j.simpat.2024.103016","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing integration of Artificial Intelligence (AI) in microgrid control systems, there is a risk that malicious actors may exploit vulnerabilities in machine learning algorithms to disrupt power generation and distribution. In this work, we study the potential impacts of adversarial attacks on Vehicle-to-Microgrid (V2M), and discuss potential defensive countermeasures to prevent these risks. Our analysis shows that the decentralized and adaptive nature of microgrids makes them particularly vulnerable to adversarial attacks, and highlights the need for robust security measures to protect against such threats. We propose a framework to detect and prevent adversarial attacks on V2M services using Generative Adversarial Network (GAN) model and a Machine Learning (ML) classifier. We focus on two adversarial attacks, namely inference and evasion attacks. We test our proposed framework under three attack scenarios to ensure the robustness of our solution. As the adversary’s knowledge of a system determines the success of the executed attacks, we study four gray-box cases where the adversary has access to different percentages of the victim’s training dataset. Moreover, we compare our proposed detection method against four benchmark detectors. Furthermore, we evaluate the effectiveness of our proposed method to detect three benchmark evasion attack. Through simulations, we show that all benchmark detectors fail to successfully detect adversarial attacks, particularly when the attacks are intelligently augmented, obtaining an Adversarial Detection Rate (ADR) of up to 60.4%. On the other hand, our proposed framework outperforms the other detectors and achieves an ADR of 92.5%.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"137 ","pages":"Article 103016"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001308/pdfft?md5=9c9f6008f69a380b2cf7dbcf98131bfe&pid=1-s2.0-S1569190X24001308-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An AI-driven solution to prevent adversarial attacks on mobile Vehicle-to-Microgrid services\",\"authors\":\"Ahmed Omara, Burak Kantarci\",\"doi\":\"10.1016/j.simpat.2024.103016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing integration of Artificial Intelligence (AI) in microgrid control systems, there is a risk that malicious actors may exploit vulnerabilities in machine learning algorithms to disrupt power generation and distribution. In this work, we study the potential impacts of adversarial attacks on Vehicle-to-Microgrid (V2M), and discuss potential defensive countermeasures to prevent these risks. Our analysis shows that the decentralized and adaptive nature of microgrids makes them particularly vulnerable to adversarial attacks, and highlights the need for robust security measures to protect against such threats. We propose a framework to detect and prevent adversarial attacks on V2M services using Generative Adversarial Network (GAN) model and a Machine Learning (ML) classifier. We focus on two adversarial attacks, namely inference and evasion attacks. We test our proposed framework under three attack scenarios to ensure the robustness of our solution. As the adversary’s knowledge of a system determines the success of the executed attacks, we study four gray-box cases where the adversary has access to different percentages of the victim’s training dataset. Moreover, we compare our proposed detection method against four benchmark detectors. Furthermore, we evaluate the effectiveness of our proposed method to detect three benchmark evasion attack. Through simulations, we show that all benchmark detectors fail to successfully detect adversarial attacks, particularly when the attacks are intelligently augmented, obtaining an Adversarial Detection Rate (ADR) of up to 60.4%. On the other hand, our proposed framework outperforms the other detectors and achieves an ADR of 92.5%.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"137 \",\"pages\":\"Article 103016\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001308/pdfft?md5=9c9f6008f69a380b2cf7dbcf98131bfe&pid=1-s2.0-S1569190X24001308-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001308\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001308","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An AI-driven solution to prevent adversarial attacks on mobile Vehicle-to-Microgrid services
With the increasing integration of Artificial Intelligence (AI) in microgrid control systems, there is a risk that malicious actors may exploit vulnerabilities in machine learning algorithms to disrupt power generation and distribution. In this work, we study the potential impacts of adversarial attacks on Vehicle-to-Microgrid (V2M), and discuss potential defensive countermeasures to prevent these risks. Our analysis shows that the decentralized and adaptive nature of microgrids makes them particularly vulnerable to adversarial attacks, and highlights the need for robust security measures to protect against such threats. We propose a framework to detect and prevent adversarial attacks on V2M services using Generative Adversarial Network (GAN) model and a Machine Learning (ML) classifier. We focus on two adversarial attacks, namely inference and evasion attacks. We test our proposed framework under three attack scenarios to ensure the robustness of our solution. As the adversary’s knowledge of a system determines the success of the executed attacks, we study four gray-box cases where the adversary has access to different percentages of the victim’s training dataset. Moreover, we compare our proposed detection method against four benchmark detectors. Furthermore, we evaluate the effectiveness of our proposed method to detect three benchmark evasion attack. Through simulations, we show that all benchmark detectors fail to successfully detect adversarial attacks, particularly when the attacks are intelligently augmented, obtaining an Adversarial Detection Rate (ADR) of up to 60.4%. On the other hand, our proposed framework outperforms the other detectors and achieves an ADR of 92.5%.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.