PtrMYB203 对杂交杨树苯丙酮途径调控和木材特性的功能影响

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-09-12 DOI:10.1016/j.plaphy.2024.109118
{"title":"PtrMYB203 对杂交杨树苯丙酮途径调控和木材特性的功能影响","authors":"","doi":"10.1016/j.plaphy.2024.109118","DOIUrl":null,"url":null,"abstract":"<div><p>The phenylpropanoid pathway is vital for plant growth and development, producing lignin and flavonoids. This study investigates PtrMYB203, a homolog of MYB repressors of proanthocyanidin (PA) biosynthesis in <em>Populus trichocarpa</em>, as a transcriptional repressor in the phenylpropanoid pathway of hybrid poplar (<em>Populus alba</em> x <em>P. glandulosa</em>). Overexpression of <em>PtrMYB203</em> (<em>35S::PtrMYB203</em>) in hybrid poplar detrimentally impacted plant growth and development. Histological analysis revealed irregular xylem vessel formation and decreased lignin content, corroborated by Klason lignin assays. Moreover, <em>35S::PtrMYB203</em> transgenic poplars exhibited significant decreases in anthocyanin and PA accumulations in callus tissues, even under high light conditions. Quantitative RT-PCR analysis and protoplast-based transcriptional activation assay confirmed the downregulation of lignin and flavonoid biosynthesis genes. This genetic modification also alters the expression of several MYB transcription factors, essential for phenylpropanoid pathway regulation. Remarkably, saccharification efficiency in the <em>35S::PtrMYB203</em> poplar was improved by over 34% following hot water treatment alone. These findings suggest <em>PtrMYB203</em> as a potential genetic target for enhancing wood properties for bioenergy production, providing valuable insights into the manipulation of metabolite pathways in woody perennials to advance wood biotechnology.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional impacts of PtrMYB203 on phenylpropanoid pathway regulation and wood properties in hybrid poplar\",\"authors\":\"\",\"doi\":\"10.1016/j.plaphy.2024.109118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phenylpropanoid pathway is vital for plant growth and development, producing lignin and flavonoids. This study investigates PtrMYB203, a homolog of MYB repressors of proanthocyanidin (PA) biosynthesis in <em>Populus trichocarpa</em>, as a transcriptional repressor in the phenylpropanoid pathway of hybrid poplar (<em>Populus alba</em> x <em>P. glandulosa</em>). Overexpression of <em>PtrMYB203</em> (<em>35S::PtrMYB203</em>) in hybrid poplar detrimentally impacted plant growth and development. Histological analysis revealed irregular xylem vessel formation and decreased lignin content, corroborated by Klason lignin assays. Moreover, <em>35S::PtrMYB203</em> transgenic poplars exhibited significant decreases in anthocyanin and PA accumulations in callus tissues, even under high light conditions. Quantitative RT-PCR analysis and protoplast-based transcriptional activation assay confirmed the downregulation of lignin and flavonoid biosynthesis genes. This genetic modification also alters the expression of several MYB transcription factors, essential for phenylpropanoid pathway regulation. Remarkably, saccharification efficiency in the <em>35S::PtrMYB203</em> poplar was improved by over 34% following hot water treatment alone. These findings suggest <em>PtrMYB203</em> as a potential genetic target for enhancing wood properties for bioenergy production, providing valuable insights into the manipulation of metabolite pathways in woody perennials to advance wood biotechnology.</p></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007861\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007861","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

苯丙酮途径对植物的生长和发育至关重要,它能产生木质素和类黄酮。本研究调查了 PtrMYB203,它是杨树原花青素(PA)生物合成的 MYB 抑制因子的同源物,是杂交杨树(白杨 x P. glandulosa)苯丙酮途径中的转录抑制因子。在杂交杨中过表达 PtrMYB203(35S::PtrMYB203)会对植物的生长和发育产生不利影响。组织学分析表明,木质部血管形成不规则,木质素含量降低,克拉森木质素测定也证实了这一点。此外,即使在强光条件下,35S::PtrMYB203 转基因杨树胼胝体组织中的花青素和 PA 积累也显著减少。定量 RT-PCR 分析和基于原生质体的转录激活分析证实了木质素和类黄酮生物合成基因的下调。这种基因修饰还改变了几个 MYB 转录因子的表达,这些转录因子对苯丙氨酸途径的调控至关重要。值得注意的是,仅在热水处理后,35S::PtrMYB203 杨树的糖化效率就提高了 34% 以上。这些研究结果表明,PtrMYB203 是提高生物能源生产中木材特性的潜在遗传靶标,为操纵多年生木本植物的代谢途径以推动木材生物技术的发展提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional impacts of PtrMYB203 on phenylpropanoid pathway regulation and wood properties in hybrid poplar

The phenylpropanoid pathway is vital for plant growth and development, producing lignin and flavonoids. This study investigates PtrMYB203, a homolog of MYB repressors of proanthocyanidin (PA) biosynthesis in Populus trichocarpa, as a transcriptional repressor in the phenylpropanoid pathway of hybrid poplar (Populus alba x P. glandulosa). Overexpression of PtrMYB203 (35S::PtrMYB203) in hybrid poplar detrimentally impacted plant growth and development. Histological analysis revealed irregular xylem vessel formation and decreased lignin content, corroborated by Klason lignin assays. Moreover, 35S::PtrMYB203 transgenic poplars exhibited significant decreases in anthocyanin and PA accumulations in callus tissues, even under high light conditions. Quantitative RT-PCR analysis and protoplast-based transcriptional activation assay confirmed the downregulation of lignin and flavonoid biosynthesis genes. This genetic modification also alters the expression of several MYB transcription factors, essential for phenylpropanoid pathway regulation. Remarkably, saccharification efficiency in the 35S::PtrMYB203 poplar was improved by over 34% following hot water treatment alone. These findings suggest PtrMYB203 as a potential genetic target for enhancing wood properties for bioenergy production, providing valuable insights into the manipulation of metabolite pathways in woody perennials to advance wood biotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Metabolomics combined with proteomics reveals phytotoxic effects of norfloxacin under drought stress on Oryza sativa The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle Responses of Brassica napus to soil cadmium under elevated CO2 concentration based on rhizosphere microbiome, root transcriptome and metabolome The Vacuolar H+-ATPase subunit C is involved in oligogalacturonide (OG) internalization and OG-triggered immunity Functional impacts of PtrMYB203 on phenylpropanoid pathway regulation and wood properties in hybrid poplar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1