Jolanda Rihter Pikl , Aleksandra Lobnik , Milenko Roš , Hakim El Khiar , Nataša Uranjek
{"title":"测定和去除废水处理废水中的微纤维和大肠菌群","authors":"Jolanda Rihter Pikl , Aleksandra Lobnik , Milenko Roš , Hakim El Khiar , Nataša Uranjek","doi":"10.1016/j.clet.2024.100806","DOIUrl":null,"url":null,"abstract":"<div><p>The research aim was to remove as many microfibres, microplastics and harmful bacteria as possible from the polluted water to produce suitable water for reuse. The test water was the effluent from the municipal wastewater treatment plant in Shalek Valley. A pilot plant with a ceramic SiC filter for membrane filtration and ozonation of filtered water was set up to remove suspended solids, micro-fibres, microplastics, and harmful microorganisms. The Microfibers Detection System was developed to identify microfibers on-site. The results showed that the microfiltration system combined with ozone treatment effectively removed total suspended solids, microfibres, microplastics and microorganisms. A detection system method for identifying microfibres and microplastic particles was used to determine how many microfibres and microorganisms were identified by membrane filtration and ozonation. The study showed that membrane filtration successfully removed all microfibres, 88% of total coliforms and 93% of <em>E. coli</em>. After additional ozonation, we achieved a 100% removal rate of total coliforms and a 100% removal rate of <em>E. coli</em>. The treated water (effluent from the municipal wastewater treatment plant) can be used for specific purposes, such as agricultural irrigation or enhancing bathing waters near the plant's water effluent.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"22 ","pages":"Article 100806"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000867/pdfft?md5=a2ef6ef2ecce3bd0b16ccc4721f2640a&pid=1-s2.0-S2666790824000867-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Microfibres and coliforms determination and removal from wastewater treatment effluent\",\"authors\":\"Jolanda Rihter Pikl , Aleksandra Lobnik , Milenko Roš , Hakim El Khiar , Nataša Uranjek\",\"doi\":\"10.1016/j.clet.2024.100806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research aim was to remove as many microfibres, microplastics and harmful bacteria as possible from the polluted water to produce suitable water for reuse. The test water was the effluent from the municipal wastewater treatment plant in Shalek Valley. A pilot plant with a ceramic SiC filter for membrane filtration and ozonation of filtered water was set up to remove suspended solids, micro-fibres, microplastics, and harmful microorganisms. The Microfibers Detection System was developed to identify microfibers on-site. The results showed that the microfiltration system combined with ozone treatment effectively removed total suspended solids, microfibres, microplastics and microorganisms. A detection system method for identifying microfibres and microplastic particles was used to determine how many microfibres and microorganisms were identified by membrane filtration and ozonation. The study showed that membrane filtration successfully removed all microfibres, 88% of total coliforms and 93% of <em>E. coli</em>. After additional ozonation, we achieved a 100% removal rate of total coliforms and a 100% removal rate of <em>E. coli</em>. The treated water (effluent from the municipal wastewater treatment plant) can be used for specific purposes, such as agricultural irrigation or enhancing bathing waters near the plant's water effluent.</p></div>\",\"PeriodicalId\":34618,\"journal\":{\"name\":\"Cleaner Engineering and Technology\",\"volume\":\"22 \",\"pages\":\"Article 100806\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000867/pdfft?md5=a2ef6ef2ecce3bd0b16ccc4721f2640a&pid=1-s2.0-S2666790824000867-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Microfibres and coliforms determination and removal from wastewater treatment effluent
The research aim was to remove as many microfibres, microplastics and harmful bacteria as possible from the polluted water to produce suitable water for reuse. The test water was the effluent from the municipal wastewater treatment plant in Shalek Valley. A pilot plant with a ceramic SiC filter for membrane filtration and ozonation of filtered water was set up to remove suspended solids, micro-fibres, microplastics, and harmful microorganisms. The Microfibers Detection System was developed to identify microfibers on-site. The results showed that the microfiltration system combined with ozone treatment effectively removed total suspended solids, microfibres, microplastics and microorganisms. A detection system method for identifying microfibres and microplastic particles was used to determine how many microfibres and microorganisms were identified by membrane filtration and ozonation. The study showed that membrane filtration successfully removed all microfibres, 88% of total coliforms and 93% of E. coli. After additional ozonation, we achieved a 100% removal rate of total coliforms and a 100% removal rate of E. coli. The treated water (effluent from the municipal wastewater treatment plant) can be used for specific purposes, such as agricultural irrigation or enhancing bathing waters near the plant's water effluent.