观测数据稀疏的分数阶动态系统数据同化的高效计算框架

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-09-12 DOI:10.1016/j.camwa.2024.09.004
Qinwu Xu
{"title":"观测数据稀疏的分数阶动态系统数据同化的高效计算框架","authors":"Qinwu Xu","doi":"10.1016/j.camwa.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce an efficient computational framework for data assimilation of fractional dynamical systems, extending traditional data assimilation techniques to fractional models. This framework offers effective computational methods that eliminate the need for complex adjoint model derivations and algorithm redesign. We establish the fundamental problem formulation, develop both the AtD and DtA approaches, and derive adjoint forms and numerical schemes for each method. Additionally, we create a unified fractional-order variational data assimilation framework applicable to both linear and nonlinear models, incorporating both explicit and implicit discrete methods. Specific discretization schemes and gradient formulas are derived for three distinct types of fractional-order models. The method's reliability and convergence are verified, and the effect of observation sparsity and quality is examined through numerical examples.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient computational framework for data assimilation of fractional-order dynamical system with sparse observations\",\"authors\":\"Qinwu Xu\",\"doi\":\"10.1016/j.camwa.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce an efficient computational framework for data assimilation of fractional dynamical systems, extending traditional data assimilation techniques to fractional models. This framework offers effective computational methods that eliminate the need for complex adjoint model derivations and algorithm redesign. We establish the fundamental problem formulation, develop both the AtD and DtA approaches, and derive adjoint forms and numerical schemes for each method. Additionally, we create a unified fractional-order variational data assimilation framework applicable to both linear and nonlinear models, incorporating both explicit and implicit discrete methods. Specific discretization schemes and gradient formulas are derived for three distinct types of fractional-order models. The method's reliability and convergence are verified, and the effect of observation sparsity and quality is examined through numerical examples.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004139\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004139","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们为分数动力系统的数据同化引入了一个高效的计算框架,将传统的数据同化技术扩展到分数模型。该框架提供了有效的计算方法,无需进行复杂的邻接模型推导和算法重新设计。我们建立了基本问题公式,开发了 AtD 和 DtA 方法,并为每种方法推导出了邻接形式和数值方案。此外,我们还创建了一个统一的分数阶变分法数据同化框架,同时适用于线性和非线性模型,包括显式和隐式离散方法。针对三种不同类型的分数阶模型,我们推导出了具体的离散化方案和梯度公式。验证了该方法的可靠性和收敛性,并通过数值示例研究了观测稀疏性和观测质量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient computational framework for data assimilation of fractional-order dynamical system with sparse observations

We introduce an efficient computational framework for data assimilation of fractional dynamical systems, extending traditional data assimilation techniques to fractional models. This framework offers effective computational methods that eliminate the need for complex adjoint model derivations and algorithm redesign. We establish the fundamental problem formulation, develop both the AtD and DtA approaches, and derive adjoint forms and numerical schemes for each method. Additionally, we create a unified fractional-order variational data assimilation framework applicable to both linear and nonlinear models, incorporating both explicit and implicit discrete methods. Specific discretization schemes and gradient formulas are derived for three distinct types of fractional-order models. The method's reliability and convergence are verified, and the effect of observation sparsity and quality is examined through numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Numerical study of magnesium dendrite microstructure under convection: Change of dendrite symmetry Topology optimization design of labyrinth seal-type devices considering subsonic compressible turbulent flow conditions An implementation of hp-FEM for the fractional Laplacian Modular parametric PGD enabling online solution of partial differential equations An implicit GNN solver for Poisson-like problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1