Zhikai Xue , Weiwei Sun , Beibei Shen , Rong Wang , Chunhai Li , Enlou Zhang
{"title":"中国西南云南中部全新世晚期古环境急剧变化与人为影响","authors":"Zhikai Xue , Weiwei Sun , Beibei Shen , Rong Wang , Chunhai Li , Enlou Zhang","doi":"10.1016/j.quaint.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding long-term anthropogenic impact on the Earth's surface system is crucial for establishing reference conditions and potentially allowing future trajectories to be more rigorous and tightly constrained. In this study, the evolution of catchment erosion, chemical weathering and bottom-water hypoxia during the late Holocene are investigated using multi-proxy records from an accurately-dated sediment core from Lake Qilu in central Yunnan, southwest China. Through the comparison of our results with other paleoenvironmental records from the study region, we are able to see that the increase in anthropogenic impact on the catchment of Lake Qilu began in 780 CE, which is associated with the large scale expansion of agriculture in China. In the early stages of vegetation disturbance and agricultural land use, soil erosion and chemical weathering within in the catchment was significantly intensified, while the lake gradually changed to a state of anoxia until the period of accelerating eutrophication in 1945 CE. However, the extremely high rate of soil erosion and weak chemical weathering suggest the beginning of a new phase in terms of anthropogenic impact on the landscape. Furthermore, the late Holocene intensification of chemical weathering in monsoonal China can also be linked to increased anthropogenic activities rather than spatial differences in hydroclimate changes. This study highlights the fact that humans have been shaping the Earth's surface for millennia, which means that it is essential to place present environmental concerns into a long-term context.</p></div>","PeriodicalId":49644,"journal":{"name":"Quaternary International","volume":"708 ","pages":"Pages 26-35"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Holocene rapid paleoenvironmental changes and anthropogenic impacts in central Yunnan, southwest China\",\"authors\":\"Zhikai Xue , Weiwei Sun , Beibei Shen , Rong Wang , Chunhai Li , Enlou Zhang\",\"doi\":\"10.1016/j.quaint.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding long-term anthropogenic impact on the Earth's surface system is crucial for establishing reference conditions and potentially allowing future trajectories to be more rigorous and tightly constrained. In this study, the evolution of catchment erosion, chemical weathering and bottom-water hypoxia during the late Holocene are investigated using multi-proxy records from an accurately-dated sediment core from Lake Qilu in central Yunnan, southwest China. Through the comparison of our results with other paleoenvironmental records from the study region, we are able to see that the increase in anthropogenic impact on the catchment of Lake Qilu began in 780 CE, which is associated with the large scale expansion of agriculture in China. In the early stages of vegetation disturbance and agricultural land use, soil erosion and chemical weathering within in the catchment was significantly intensified, while the lake gradually changed to a state of anoxia until the period of accelerating eutrophication in 1945 CE. However, the extremely high rate of soil erosion and weak chemical weathering suggest the beginning of a new phase in terms of anthropogenic impact on the landscape. Furthermore, the late Holocene intensification of chemical weathering in monsoonal China can also be linked to increased anthropogenic activities rather than spatial differences in hydroclimate changes. This study highlights the fact that humans have been shaping the Earth's surface for millennia, which means that it is essential to place present environmental concerns into a long-term context.</p></div>\",\"PeriodicalId\":49644,\"journal\":{\"name\":\"Quaternary International\",\"volume\":\"708 \",\"pages\":\"Pages 26-35\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1040618224002593\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary International","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040618224002593","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Late Holocene rapid paleoenvironmental changes and anthropogenic impacts in central Yunnan, southwest China
Understanding long-term anthropogenic impact on the Earth's surface system is crucial for establishing reference conditions and potentially allowing future trajectories to be more rigorous and tightly constrained. In this study, the evolution of catchment erosion, chemical weathering and bottom-water hypoxia during the late Holocene are investigated using multi-proxy records from an accurately-dated sediment core from Lake Qilu in central Yunnan, southwest China. Through the comparison of our results with other paleoenvironmental records from the study region, we are able to see that the increase in anthropogenic impact on the catchment of Lake Qilu began in 780 CE, which is associated with the large scale expansion of agriculture in China. In the early stages of vegetation disturbance and agricultural land use, soil erosion and chemical weathering within in the catchment was significantly intensified, while the lake gradually changed to a state of anoxia until the period of accelerating eutrophication in 1945 CE. However, the extremely high rate of soil erosion and weak chemical weathering suggest the beginning of a new phase in terms of anthropogenic impact on the landscape. Furthermore, the late Holocene intensification of chemical weathering in monsoonal China can also be linked to increased anthropogenic activities rather than spatial differences in hydroclimate changes. This study highlights the fact that humans have been shaping the Earth's surface for millennia, which means that it is essential to place present environmental concerns into a long-term context.
期刊介绍:
Quaternary International is the official journal of the International Union for Quaternary Research. The objectives are to publish a high quality scientific journal under the auspices of the premier Quaternary association that reflects the interdisciplinary nature of INQUA and records recent advances in Quaternary science that appeal to a wide audience.
This series will encompass all the full spectrum of the physical and natural sciences that are commonly employed in solving Quaternary problems. The policy is to publish peer refereed collected research papers from symposia, workshops and meetings sponsored by INQUA. In addition, other organizations may request publication of their collected works pertaining to the Quaternary.