M.A. Toloza Sandoval, A.L. Araújo, F. Crasto de Lima, A. Fazzio
{"title":"锡耶宾斯基挂毯中螺旋边缘态的传输指纹","authors":"M.A. Toloza Sandoval, A.L. Araújo, F. Crasto de Lima, A. Fazzio","doi":"10.1016/j.physe.2024.116097","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, synthesis and experimental research of fractalized materials has evolved in a paradigmatic crossroad with topological states of matter. Here, we present a theoretical investigation of the helical edge transport in Sierpiński carpets (SCs), combining the Bernevig–Hughes–Zhang model with the Landauer transport framework. By starting from a pristine two-dimensional topological insulator, the results reveal vanishing and reentrant resonant transport modes enabled for increased SC fractal generation. We observe that fractal with superior hierarchy inherits characteristics due to self-similarity and present conductance patterns resembling a miniband transport picture with fractal fingerprints. Real-space mapping of emerging resonant and antiresonant states provides an unprecedented view of helical-edge currents encoded in these intricate geometries and their multiple edges, underscoring the significance and consistency of our findings.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116097"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport fingerprints of helical edge states in Sierpiński tapestries\",\"authors\":\"M.A. Toloza Sandoval, A.L. Araújo, F. Crasto de Lima, A. Fazzio\",\"doi\":\"10.1016/j.physe.2024.116097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, synthesis and experimental research of fractalized materials has evolved in a paradigmatic crossroad with topological states of matter. Here, we present a theoretical investigation of the helical edge transport in Sierpiński carpets (SCs), combining the Bernevig–Hughes–Zhang model with the Landauer transport framework. By starting from a pristine two-dimensional topological insulator, the results reveal vanishing and reentrant resonant transport modes enabled for increased SC fractal generation. We observe that fractal with superior hierarchy inherits characteristics due to self-similarity and present conductance patterns resembling a miniband transport picture with fractal fingerprints. Real-space mapping of emerging resonant and antiresonant states provides an unprecedented view of helical-edge currents encoded in these intricate geometries and their multiple edges, underscoring the significance and consistency of our findings.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"165 \",\"pages\":\"Article 116097\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724002017\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002017","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Transport fingerprints of helical edge states in Sierpiński tapestries
Recently, synthesis and experimental research of fractalized materials has evolved in a paradigmatic crossroad with topological states of matter. Here, we present a theoretical investigation of the helical edge transport in Sierpiński carpets (SCs), combining the Bernevig–Hughes–Zhang model with the Landauer transport framework. By starting from a pristine two-dimensional topological insulator, the results reveal vanishing and reentrant resonant transport modes enabled for increased SC fractal generation. We observe that fractal with superior hierarchy inherits characteristics due to self-similarity and present conductance patterns resembling a miniband transport picture with fractal fingerprints. Real-space mapping of emerging resonant and antiresonant states provides an unprecedented view of helical-edge currents encoded in these intricate geometries and their multiple edges, underscoring the significance and consistency of our findings.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures