将人工智能可靠、高效地集成到相机捕捉器中,在不断学习的基础上实现对野生动物的智能监测

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2024-09-08 DOI:10.1016/j.ecoinf.2024.102815
Delia Velasco-Montero , Jorge Fernández-Berni , Ricardo Carmona-Galán , Ariadna Sanglas , Francisco Palomares
{"title":"将人工智能可靠、高效地集成到相机捕捉器中,在不断学习的基础上实现对野生动物的智能监测","authors":"Delia Velasco-Montero ,&nbsp;Jorge Fernández-Berni ,&nbsp;Ricardo Carmona-Galán ,&nbsp;Ariadna Sanglas ,&nbsp;Francisco Palomares","doi":"10.1016/j.ecoinf.2024.102815","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we comprehensively report on an efficient approach for the integration of artificial intelligence (AI) processing pipelines in camera traps for smart on-site wildlife monitoring. Our work covers hardware, software, and algorithmics. We have built two prototypes of smart camera trap on a maximum bill of materials of 100$. We have also built two datasets, made publicly available, comprising over 17 k images, many of them notably challenging even for humans. Leveraging our broad expertise on embedded systems, specialized software libraries and toolchains, and AI techniques such as transfer learning, explainable AI, and, most importantly, continual learning, we achieve more reliable inference on-site - specifically 10 % higher F1-score - than MegaDetector run off-site on a desktop computer. The paper includes many practical details on system realization and on-site training in addition to a vast set of lab and experimental results.</p></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003571/pdfft?md5=eb0fce560598e6780765baf89fb57705&pid=1-s2.0-S1574954124003571-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reliable and efficient integration of AI into camera traps for smart wildlife monitoring based on continual learning\",\"authors\":\"Delia Velasco-Montero ,&nbsp;Jorge Fernández-Berni ,&nbsp;Ricardo Carmona-Galán ,&nbsp;Ariadna Sanglas ,&nbsp;Francisco Palomares\",\"doi\":\"10.1016/j.ecoinf.2024.102815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we comprehensively report on an efficient approach for the integration of artificial intelligence (AI) processing pipelines in camera traps for smart on-site wildlife monitoring. Our work covers hardware, software, and algorithmics. We have built two prototypes of smart camera trap on a maximum bill of materials of 100$. We have also built two datasets, made publicly available, comprising over 17 k images, many of them notably challenging even for humans. Leveraging our broad expertise on embedded systems, specialized software libraries and toolchains, and AI techniques such as transfer learning, explainable AI, and, most importantly, continual learning, we achieve more reliable inference on-site - specifically 10 % higher F1-score - than MegaDetector run off-site on a desktop computer. The paper includes many practical details on system realization and on-site training in addition to a vast set of lab and experimental results.</p></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1574954124003571/pdfft?md5=eb0fce560598e6780765baf89fb57705&pid=1-s2.0-S1574954124003571-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954124003571\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003571","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们全面报告了一种将人工智能(AI)处理流水线集成到相机陷阱中以实现现场野生动物智能监测的有效方法。我们的工作涵盖硬件、软件和算法。我们用最多 100 美元的材料费制作了两个智能相机陷阱原型。我们还建立了两个公开发布的数据集,其中包括超过 1.7 万张图像,许多图像甚至对人类来说都具有挑战性。利用我们在嵌入式系统、专业软件库和工具链方面的广泛专业知识,以及迁移学习、可解释人工智能等人工智能技术,最重要的是持续学习,我们在现场实现了更可靠的推理,特别是比在台式电脑上非现场运行的 MegaDetector 高出 10% 的 F1 分数。除了大量的实验室和实验结果外,论文还包括许多关于系统实现和现场培训的实用细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliable and efficient integration of AI into camera traps for smart wildlife monitoring based on continual learning

In this paper, we comprehensively report on an efficient approach for the integration of artificial intelligence (AI) processing pipelines in camera traps for smart on-site wildlife monitoring. Our work covers hardware, software, and algorithmics. We have built two prototypes of smart camera trap on a maximum bill of materials of 100$. We have also built two datasets, made publicly available, comprising over 17 k images, many of them notably challenging even for humans. Leveraging our broad expertise on embedded systems, specialized software libraries and toolchains, and AI techniques such as transfer learning, explainable AI, and, most importantly, continual learning, we achieve more reliable inference on-site - specifically 10 % higher F1-score - than MegaDetector run off-site on a desktop computer. The paper includes many practical details on system realization and on-site training in addition to a vast set of lab and experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
The retrospective double-entry of a long-term ecological dataset Integrating infiltration processes in hybrid downscaling methods to estimate sub-surface soil moisture A deep learning pipeline for time-lapse camera monitoring of insects and their floral environments A complete framework for hyperbolic acoustic localization with application to northern bobwhite covey calls Impacts of LULC changes on runoff from rivers through a coupled SWAT and BiLSTM model: A case study in Zhanghe River Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1