多维机器学习框架:准确高效地估算电池充电状态

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-09-13 DOI:10.1016/j.jpowsour.2024.235417
{"title":"多维机器学习框架:准确高效地估算电池充电状态","authors":"","doi":"10.1016/j.jpowsour.2024.235417","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate state of charge (SOC) estimation is essential for battery safe and efficient utilization. As artificial intelligence technologies evolve, data-driven methods have become mainstream for estimating SOC. However, the technique can significantly deteriorate model performance when encountering poor or insufficient data quality. In this paper, we apply median filtering to eliminate extreme noise and utilize continuous wavelet transform to extract time-frequency features from voltage signals. Additionally, we generate novel features via feature crossing. We then apply dimensionality reduction via the random forest method to decrease computational expense. Finally, we select a convolutional neural network (CNN) as the base model to learn optimized features for more precise SOC estimation. To confirm the efficacy of our proposed method, this study compares it with CNN, long short-term memory (LSTM), bidirectional LSTM (BILSTM), and a CNN-BILSTM model combined with an attention mechanism. These comparisons are conducted under different temperatures and operating conditions. The results indicate that this method achieves a mean absolute error and a root mean square error of less than 2.89 % and 3.71 %, respectively, in SOC estimation, demonstrating superior accuracy compared to other models. This study underscores the significance of feature engineering techniques in SOC estimation.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-dimensional machine learning framework for accurate and efficient battery state of charge estimation\",\"authors\":\"\",\"doi\":\"10.1016/j.jpowsour.2024.235417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate state of charge (SOC) estimation is essential for battery safe and efficient utilization. As artificial intelligence technologies evolve, data-driven methods have become mainstream for estimating SOC. However, the technique can significantly deteriorate model performance when encountering poor or insufficient data quality. In this paper, we apply median filtering to eliminate extreme noise and utilize continuous wavelet transform to extract time-frequency features from voltage signals. Additionally, we generate novel features via feature crossing. We then apply dimensionality reduction via the random forest method to decrease computational expense. Finally, we select a convolutional neural network (CNN) as the base model to learn optimized features for more precise SOC estimation. To confirm the efficacy of our proposed method, this study compares it with CNN, long short-term memory (LSTM), bidirectional LSTM (BILSTM), and a CNN-BILSTM model combined with an attention mechanism. These comparisons are conducted under different temperatures and operating conditions. The results indicate that this method achieves a mean absolute error and a root mean square error of less than 2.89 % and 3.71 %, respectively, in SOC estimation, demonstrating superior accuracy compared to other models. This study underscores the significance of feature engineering techniques in SOC estimation.</p></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324013697\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324013697","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确的电荷状态(SOC)估算对于电池的安全和高效利用至关重要。随着人工智能技术的发展,数据驱动法已成为估算 SOC 的主流方法。然而,当数据质量较差或不足时,该技术会大大降低模型性能。在本文中,我们采用中值滤波消除极端噪声,并利用连续小波变换从电压信号中提取时频特征。此外,我们还通过特征交叉生成新特征。然后,我们通过随机森林方法进行降维,以降低计算成本。最后,我们选择卷积神经网络(CNN)作为基础模型,学习优化特征,以实现更精确的 SOC 估算。为了证实我们提出的方法的有效性,本研究将其与 CNN、长短期记忆(LSTM)、双向 LSTM(BILSTM)以及结合注意力机制的 CNN-BILSTM 模型进行了比较。这些比较是在不同的温度和工作条件下进行的。结果表明,该方法在 SOC 估算中的平均绝对误差和均方根误差分别小于 2.89 % 和 3.71 %,与其他模型相比具有更高的准确性。这项研究强调了特征工程技术在 SOC 估算中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-dimensional machine learning framework for accurate and efficient battery state of charge estimation

Accurate state of charge (SOC) estimation is essential for battery safe and efficient utilization. As artificial intelligence technologies evolve, data-driven methods have become mainstream for estimating SOC. However, the technique can significantly deteriorate model performance when encountering poor or insufficient data quality. In this paper, we apply median filtering to eliminate extreme noise and utilize continuous wavelet transform to extract time-frequency features from voltage signals. Additionally, we generate novel features via feature crossing. We then apply dimensionality reduction via the random forest method to decrease computational expense. Finally, we select a convolutional neural network (CNN) as the base model to learn optimized features for more precise SOC estimation. To confirm the efficacy of our proposed method, this study compares it with CNN, long short-term memory (LSTM), bidirectional LSTM (BILSTM), and a CNN-BILSTM model combined with an attention mechanism. These comparisons are conducted under different temperatures and operating conditions. The results indicate that this method achieves a mean absolute error and a root mean square error of less than 2.89 % and 3.71 %, respectively, in SOC estimation, demonstrating superior accuracy compared to other models. This study underscores the significance of feature engineering techniques in SOC estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
High temperature induced abundant closed nanopores for hard carbon as high-performance sodium-ion batteries anodes Ambient-temperature aqueous electrochemical route for direct Re-functionalization of spent LFP cathodes of lithium-ion batteries High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation Development of integrated thermally autonomous reformed methanol-proton exchange membrane fuel cell system A fast-kinetics ternary composite cathode design for high-rate aqueous zinc-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1