有机光伏技术向 20% 效率迈进

Lei Zhu, Ming Zhang, Zichun Zhou, Wenkai Zhong, Tianyu Hao, Shengjie Xu, Rui Zeng, Jiaxing Zhuang, Xiaonan Xue, Hao Jing, Yongming Zhang, Feng Liu
{"title":"有机光伏技术向 20% 效率迈进","authors":"Lei Zhu, Ming Zhang, Zichun Zhou, Wenkai Zhong, Tianyu Hao, Shengjie Xu, Rui Zeng, Jiaxing Zhuang, Xiaonan Xue, Hao Jing, Yongming Zhang, Feng Liu","doi":"10.1038/s44287-024-00080-3","DOIUrl":null,"url":null,"abstract":"Organic photovoltaic (OPV) technology is flexible, lightweight, semitransparent and ecofriendly, but it has historically suffered from low power conversion efficiency (PCE). However, since 2015, the materials design and PCE of OPV devices have been markedly optimized, and there is now an increasing understanding of OPV optoelectronic processes and blending morphology within the bulk heterojunction framework. In this Review, we survey OPV technology, discussing progress in enhancing the PCE and in understanding the relationship between structure and performance. This progress includes the development of emerging OPV materials and techniques for manipulation and characterization of thin-film morphology. Furthermore, we address the practical application issues ahead of OPV technology, showcasing strategies for improving device stability, fabricating large-area modules and realizing device encapsulation. Finally, we highlight future research directions, including the use of machine learning for material design and synthesis, device fabrication optimization, and prediction and optimization of device performance. Organic photovoltaics are flexible, lightweight and widely applicable, but they face commercialization challenges owing to stability and fabrication issues. This Review explores progress and technological bottlenecks in material innovation, morphology control, device stability and large-scale module fabrication for commercial use.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 9","pages":"581-596"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress of organic photovoltaics towards 20% efficiency\",\"authors\":\"Lei Zhu, Ming Zhang, Zichun Zhou, Wenkai Zhong, Tianyu Hao, Shengjie Xu, Rui Zeng, Jiaxing Zhuang, Xiaonan Xue, Hao Jing, Yongming Zhang, Feng Liu\",\"doi\":\"10.1038/s44287-024-00080-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic photovoltaic (OPV) technology is flexible, lightweight, semitransparent and ecofriendly, but it has historically suffered from low power conversion efficiency (PCE). However, since 2015, the materials design and PCE of OPV devices have been markedly optimized, and there is now an increasing understanding of OPV optoelectronic processes and blending morphology within the bulk heterojunction framework. In this Review, we survey OPV technology, discussing progress in enhancing the PCE and in understanding the relationship between structure and performance. This progress includes the development of emerging OPV materials and techniques for manipulation and characterization of thin-film morphology. Furthermore, we address the practical application issues ahead of OPV technology, showcasing strategies for improving device stability, fabricating large-area modules and realizing device encapsulation. Finally, we highlight future research directions, including the use of machine learning for material design and synthesis, device fabrication optimization, and prediction and optimization of device performance. Organic photovoltaics are flexible, lightweight and widely applicable, but they face commercialization challenges owing to stability and fabrication issues. This Review explores progress and technological bottlenecks in material innovation, morphology control, device stability and large-scale module fabrication for commercial use.\",\"PeriodicalId\":501701,\"journal\":{\"name\":\"Nature Reviews Electrical Engineering\",\"volume\":\"1 9\",\"pages\":\"581-596\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44287-024-00080-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00080-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有机光伏(OPV)技术具有灵活、轻质、半透明和生态友好的特点,但其功率转换效率(PCE)一直较低。然而,自 2015 年以来,OPV 器件的材料设计和 PCE 已得到显著优化,现在人们对 OPV 光电过程和体质异质结框架内的混合形态有了越来越多的了解。在本《综述》中,我们将介绍 OPV 技术,讨论在提高 PCE 和理解结构与性能之间的关系方面取得的进展。这些进展包括新兴 OPV 材料的开发以及薄膜形态的操作和表征技术。此外,我们还探讨了 OPV 技术的实际应用问题,展示了提高器件稳定性、制造大面积模块和实现器件封装的策略。最后,我们强调了未来的研究方向,包括利用机器学习进行材料设计和合成、器件制造优化以及器件性能预测和优化。有机光伏技术灵活轻便、应用广泛,但由于稳定性和制造问题,其商业化面临挑战。本综述探讨了在材料创新、形态控制、器件稳定性和商业用途大规模模块制造方面的进展和技术瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress of organic photovoltaics towards 20% efficiency
Organic photovoltaic (OPV) technology is flexible, lightweight, semitransparent and ecofriendly, but it has historically suffered from low power conversion efficiency (PCE). However, since 2015, the materials design and PCE of OPV devices have been markedly optimized, and there is now an increasing understanding of OPV optoelectronic processes and blending morphology within the bulk heterojunction framework. In this Review, we survey OPV technology, discussing progress in enhancing the PCE and in understanding the relationship between structure and performance. This progress includes the development of emerging OPV materials and techniques for manipulation and characterization of thin-film morphology. Furthermore, we address the practical application issues ahead of OPV technology, showcasing strategies for improving device stability, fabricating large-area modules and realizing device encapsulation. Finally, we highlight future research directions, including the use of machine learning for material design and synthesis, device fabrication optimization, and prediction and optimization of device performance. Organic photovoltaics are flexible, lightweight and widely applicable, but they face commercialization challenges owing to stability and fabrication issues. This Review explores progress and technological bottlenecks in material innovation, morphology control, device stability and large-scale module fabrication for commercial use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The future of 2D spintronics Spintronics for ultra-low-power circuits and systems Spin-transfer torque magnetoresistive random access memory technology status and future directions Perpendicularly magnetized materials for energy-efficient orbitronics Spintronic neural systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1