Yuan Zhou,Jing-Wei Wang,Lian-Zhen Cao,Guang-Hui Wang,Zeyun Shi,Dong Yan Lü,Hai-Bo Huang,Chang-Sheng Hu
{"title":"通过声学实现手性双模利普金-梅什科夫-格里克模型","authors":"Yuan Zhou,Jing-Wei Wang,Lian-Zhen Cao,Guang-Hui Wang,Zeyun Shi,Dong Yan Lü,Hai-Bo Huang,Chang-Sheng Hu","doi":"10.1088/1361-6633/ad797d","DOIUrl":null,"url":null,"abstract":"The \\emph{chirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) models} are mimicked in a potential hybrid quantum system,
with respect to two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave (SAW) cavities, respectively. Assisted by the dichromatic classical optical drives with chiral designs, this proposal can simulate the two-mode LMG type long-range spin-spin interactions with a left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into the two-mode spin-squeezed (TMSS) states, but also simulate the fresh quantum critical phenomenon and time-crystal behaviours, and so on. Because this acoustic-based system can give rise to ion-trap-like interactions without any additional trap technique in principle, it is believed that our work can be considered a fresh attempt at realizing the chiral quantum manipulation of spin-spin interactions by using acoustic hybrid systems.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"8 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.\",\"authors\":\"Yuan Zhou,Jing-Wei Wang,Lian-Zhen Cao,Guang-Hui Wang,Zeyun Shi,Dong Yan Lü,Hai-Bo Huang,Chang-Sheng Hu\",\"doi\":\"10.1088/1361-6633/ad797d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The \\\\emph{chirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) models} are mimicked in a potential hybrid quantum system,
with respect to two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave (SAW) cavities, respectively. Assisted by the dichromatic classical optical drives with chiral designs, this proposal can simulate the two-mode LMG type long-range spin-spin interactions with a left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into the two-mode spin-squeezed (TMSS) states, but also simulate the fresh quantum critical phenomenon and time-crystal behaviours, and so on. Because this acoustic-based system can give rise to ion-trap-like interactions without any additional trap technique in principle, it is believed that our work can be considered a fresh attempt at realizing the chiral quantum manipulation of spin-spin interactions by using acoustic hybrid systems.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ad797d\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad797d","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
The \emph{chirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) models} are mimicked in a potential hybrid quantum system,
with respect to two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave (SAW) cavities, respectively. Assisted by the dichromatic classical optical drives with chiral designs, this proposal can simulate the two-mode LMG type long-range spin-spin interactions with a left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into the two-mode spin-squeezed (TMSS) states, but also simulate the fresh quantum critical phenomenon and time-crystal behaviours, and so on. Because this acoustic-based system can give rise to ion-trap-like interactions without any additional trap technique in principle, it is believed that our work can be considered a fresh attempt at realizing the chiral quantum manipulation of spin-spin interactions by using acoustic hybrid systems.
期刊介绍:
Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.