Nadia L. Martiren, Sofía Bajicoff, Yanina Bellizzi, Viviana Blank, Leonor Roguin, Patricia Cornier, Ernesto G Mata, Carina Delpiccolo
{"title":"在寻找抗癌活性过程中生成含青霉素杂交化合物的合成策略","authors":"Nadia L. Martiren, Sofía Bajicoff, Yanina Bellizzi, Viviana Blank, Leonor Roguin, Patricia Cornier, Ernesto G Mata, Carina Delpiccolo","doi":"10.1002/cbdv.202402198","DOIUrl":null,"url":null,"abstract":"An extended library of hybrids that combined a penicillin derivative with a peptoid moiety was designed and synthetized using either a solid‐phase or a mixed solid‐phase/solution‐phase strategy. The library was further evaluated for antiproliferative activity. While none of the different synthesized compounds showed significant cytotoxicity against a normal cell line, tumor cell results drew several conclusions, when comparing with our reference, the highly active triazolylpeptidyl penicillin derivative, TAF7f. Thus, when the 1,2,3‐triazole group was exchanged by its “retro‐inverse” analogue, no change was noted in the activity of the hybrids; however, better performance was generally obtained if the triazole is replaced by a glycine moiety. Additionally, the absence of hydrogen bond donor groups decreased the compounds activity, which could explain that, in general, this set of derivatives were less active than their peptide‐containing analogues. From this study, is indisputable that, regardless of the type of chain (peptide, peptoid or mixture) attached to penicillin, an isobutyl side chain placed in the position closest to penicillin and a benzyl in the next position are determinant for the activity.","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Strategies towards the Generation of Penicillin‐Containing Hybrids in the Search for Anticancer Activity\",\"authors\":\"Nadia L. Martiren, Sofía Bajicoff, Yanina Bellizzi, Viviana Blank, Leonor Roguin, Patricia Cornier, Ernesto G Mata, Carina Delpiccolo\",\"doi\":\"10.1002/cbdv.202402198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extended library of hybrids that combined a penicillin derivative with a peptoid moiety was designed and synthetized using either a solid‐phase or a mixed solid‐phase/solution‐phase strategy. The library was further evaluated for antiproliferative activity. While none of the different synthesized compounds showed significant cytotoxicity against a normal cell line, tumor cell results drew several conclusions, when comparing with our reference, the highly active triazolylpeptidyl penicillin derivative, TAF7f. Thus, when the 1,2,3‐triazole group was exchanged by its “retro‐inverse” analogue, no change was noted in the activity of the hybrids; however, better performance was generally obtained if the triazole is replaced by a glycine moiety. Additionally, the absence of hydrogen bond donor groups decreased the compounds activity, which could explain that, in general, this set of derivatives were less active than their peptide‐containing analogues. From this study, is indisputable that, regardless of the type of chain (peptide, peptoid or mixture) attached to penicillin, an isobutyl side chain placed in the position closest to penicillin and a benzyl in the next position are determinant for the activity.\",\"PeriodicalId\":9878,\"journal\":{\"name\":\"Chemistry & Biodiversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & Biodiversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cbdv.202402198\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202402198","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthetic Strategies towards the Generation of Penicillin‐Containing Hybrids in the Search for Anticancer Activity
An extended library of hybrids that combined a penicillin derivative with a peptoid moiety was designed and synthetized using either a solid‐phase or a mixed solid‐phase/solution‐phase strategy. The library was further evaluated for antiproliferative activity. While none of the different synthesized compounds showed significant cytotoxicity against a normal cell line, tumor cell results drew several conclusions, when comparing with our reference, the highly active triazolylpeptidyl penicillin derivative, TAF7f. Thus, when the 1,2,3‐triazole group was exchanged by its “retro‐inverse” analogue, no change was noted in the activity of the hybrids; however, better performance was generally obtained if the triazole is replaced by a glycine moiety. Additionally, the absence of hydrogen bond donor groups decreased the compounds activity, which could explain that, in general, this set of derivatives were less active than their peptide‐containing analogues. From this study, is indisputable that, regardless of the type of chain (peptide, peptoid or mixture) attached to penicillin, an isobutyl side chain placed in the position closest to penicillin and a benzyl in the next position are determinant for the activity.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.