用于水分离的单掺杂(X = S2-、Se2- 和 Te2-)和共掺杂(Zr4+-X)TiO2 单层纳米片:DFT 建模

IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of the Iranian Chemical Society Pub Date : 2024-09-06 DOI:10.1007/s13738-024-03096-6
Nasim Orangi, Hossein Farrokhpour
{"title":"用于水分离的单掺杂(X = S2-、Se2- 和 Te2-)和共掺杂(Zr4+-X)TiO2 单层纳米片:DFT 建模","authors":"Nasim Orangi,&nbsp;Hossein Farrokhpour","doi":"10.1007/s13738-024-03096-6","DOIUrl":null,"url":null,"abstract":"<div><p>The water splitting activity of (111) TiO<sub>2</sub> monolayer nanosheet and its mono and co-doped forms has been investigated by the periodic density functional theory (DFT) calculations. Upon Zr<sup>4+</sup> mono-doping and even increasing the concentration of Zr<sup>4+</sup> dopant, the band gap of the (111) TiO<sub>2</sub> monolayer becomes wider than that of the corresponding pure monolayer (3.9 eV), which reduces the photocatalytic efficiency. Fortunately, (S<sup>2−</sup>, Se<sup>2−</sup>, and Te<sup>2−</sup>) mono-doping and their increased concentration can effectively decrease the band gap by introducing midgap states above the valence band edge for the relevant monolayers. Moreover, the (Zr<sup>4+</sup>-S<sup>2−</sup>), (Zr<sup>4+</sup>-Se<sup>2−</sup>), and (Zr<sup>4+</sup>-Te<sup>2−</sup>) co-doping leads to a narrowed band gap and enhances the visible-light photoactivity of the (111) TiO<sub>2</sub> monolayer. Among considered monolayers, the Te<sup>2−</sup>-doped and (Zr<sup>4+</sup>-Te<sup>2−</sup>) co-doped (111) TiO<sub>2</sub> monolayers are the most desirable photocatalysts for hydrogen generation in this work.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 10","pages":"2643 - 2657"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13738-024-03096-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Mono-doped (X = S2−, Se2−, and Te2−) and co-doped (Zr4+-X) TiO2 monolayer nanosheet for water splitting: DFT modeling\",\"authors\":\"Nasim Orangi,&nbsp;Hossein Farrokhpour\",\"doi\":\"10.1007/s13738-024-03096-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The water splitting activity of (111) TiO<sub>2</sub> monolayer nanosheet and its mono and co-doped forms has been investigated by the periodic density functional theory (DFT) calculations. Upon Zr<sup>4+</sup> mono-doping and even increasing the concentration of Zr<sup>4+</sup> dopant, the band gap of the (111) TiO<sub>2</sub> monolayer becomes wider than that of the corresponding pure monolayer (3.9 eV), which reduces the photocatalytic efficiency. Fortunately, (S<sup>2−</sup>, Se<sup>2−</sup>, and Te<sup>2−</sup>) mono-doping and their increased concentration can effectively decrease the band gap by introducing midgap states above the valence band edge for the relevant monolayers. Moreover, the (Zr<sup>4+</sup>-S<sup>2−</sup>), (Zr<sup>4+</sup>-Se<sup>2−</sup>), and (Zr<sup>4+</sup>-Te<sup>2−</sup>) co-doping leads to a narrowed band gap and enhances the visible-light photoactivity of the (111) TiO<sub>2</sub> monolayer. Among considered monolayers, the Te<sup>2−</sup>-doped and (Zr<sup>4+</sup>-Te<sup>2−</sup>) co-doped (111) TiO<sub>2</sub> monolayers are the most desirable photocatalysts for hydrogen generation in this work.</p></div>\",\"PeriodicalId\":676,\"journal\":{\"name\":\"Journal of the Iranian Chemical Society\",\"volume\":\"21 10\",\"pages\":\"2643 - 2657\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13738-024-03096-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Iranian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13738-024-03096-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03096-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过周期性密度泛函理论(DFT)计算研究了(111) TiO2单层纳米片及其单掺杂和共掺杂形式的分水活性。当 Zr4+ 单掺杂甚至增加 Zr4+ 掺杂浓度时,(111) TiO2 单层的带隙比相应的纯单层(3.9 eV)更宽,从而降低了光催化效率。幸运的是,(S2-、Se2- 和 Te2-)单掺杂及其浓度的增加可以通过为相关单层引入价带边缘以上的中隙态而有效降低带隙。此外,(Zr4+-S2-)、(Zr4+-Se2-)和(Zr4+-Te2-)共掺杂会导致带隙变窄,并增强 (111) TiO2 单层的可见光光活性。在所考虑的单层中,掺杂Te2和(Zr4+-Te2-)共掺杂的(111)TiO2单层是本研究中最理想的制氢光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mono-doped (X = S2−, Se2−, and Te2−) and co-doped (Zr4+-X) TiO2 monolayer nanosheet for water splitting: DFT modeling

The water splitting activity of (111) TiO2 monolayer nanosheet and its mono and co-doped forms has been investigated by the periodic density functional theory (DFT) calculations. Upon Zr4+ mono-doping and even increasing the concentration of Zr4+ dopant, the band gap of the (111) TiO2 monolayer becomes wider than that of the corresponding pure monolayer (3.9 eV), which reduces the photocatalytic efficiency. Fortunately, (S2−, Se2−, and Te2−) mono-doping and their increased concentration can effectively decrease the band gap by introducing midgap states above the valence band edge for the relevant monolayers. Moreover, the (Zr4+-S2−), (Zr4+-Se2−), and (Zr4+-Te2−) co-doping leads to a narrowed band gap and enhances the visible-light photoactivity of the (111) TiO2 monolayer. Among considered monolayers, the Te2−-doped and (Zr4+-Te2−) co-doped (111) TiO2 monolayers are the most desirable photocatalysts for hydrogen generation in this work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
230
审稿时长
5.6 months
期刊介绍: JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.
期刊最新文献
Method for analyzing nitrogen trifluoride impurities in high-purity carbon tetrafluoride by gas chromatography Methods for the fluorescence sensing of thiamine (vitamin B1)-by copper metal organic framework and rhodamine b on graphene oxide with cucurbit[7]uril Efficient and selective oxidation of alcohols and hydrocarbons catalyzed by oxovanadium(IV) unsymmetrical salophen complex supported on silica-coated CoFe2O4 magnetic nanoparticles New luminescent Eu(III) and Er(III) Schiff base complexes: synthesis, characterization and luminescence properties Regioselective ROH-epoxystyrene-opening over MWCNTs-[N4] macrocycle comprising Cu(II), Fe(III) or Cr(III)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1