通过有限奇数虚拟矢量集实现共模电压稳定的无模型预测电流控制器

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-09-10 DOI:10.1109/OJIES.2024.3457835
Majid Akbari;S. Alireza Davari;Reza Ghandehari;Freddy Flores-Bahamonde;Jose Rodriguez
{"title":"通过有限奇数虚拟矢量集实现共模电压稳定的无模型预测电流控制器","authors":"Majid Akbari;S. Alireza Davari;Reza Ghandehari;Freddy Flores-Bahamonde;Jose Rodriguez","doi":"10.1109/OJIES.2024.3457835","DOIUrl":null,"url":null,"abstract":"Reducing the common mode voltage (CMV) fluctuations is crucial in transformer-less (T-less) converters. The modulation modification-based methods inherently increase the steady-state error of the compared currents due to the reduced number of voltage vectors. This error can significantly raise the total harmonic distortion (THD) output current of the inverter. This research presents a strategy of odd virtual vectors based on model-free predictive control using the extended state observer (ESO) to fix the CMV fluctuations and a significant decrease in the THD of the output current. This means the number of CMV stabilizing vectors increases with the linear combination of odd voltage vectors. The proposed method has two advantages over CMV fluctuation reduction schemes that are modulation modification-based: simultaneous control of CMV stabilization and THD reduction in T-less converters, and independence of the controller from system variables and parameters, making it a robust predictive control method. The practical results show that the proposed method, in addition to the complete CMV stabilization and the reduction of the current THD, is completely robust to the changes in the parameters of the ultralocal model and ESO compared to the model-based solutions.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1042-1057"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675355","citationCount":"0","resultStr":"{\"title\":\"Model-Free Predictive Current Controller for Common Mode Voltage Stabilization by Finite odd Virtual Vector set\",\"authors\":\"Majid Akbari;S. Alireza Davari;Reza Ghandehari;Freddy Flores-Bahamonde;Jose Rodriguez\",\"doi\":\"10.1109/OJIES.2024.3457835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the common mode voltage (CMV) fluctuations is crucial in transformer-less (T-less) converters. The modulation modification-based methods inherently increase the steady-state error of the compared currents due to the reduced number of voltage vectors. This error can significantly raise the total harmonic distortion (THD) output current of the inverter. This research presents a strategy of odd virtual vectors based on model-free predictive control using the extended state observer (ESO) to fix the CMV fluctuations and a significant decrease in the THD of the output current. This means the number of CMV stabilizing vectors increases with the linear combination of odd voltage vectors. The proposed method has two advantages over CMV fluctuation reduction schemes that are modulation modification-based: simultaneous control of CMV stabilization and THD reduction in T-less converters, and independence of the controller from system variables and parameters, making it a robust predictive control method. The practical results show that the proposed method, in addition to the complete CMV stabilization and the reduction of the current THD, is completely robust to the changes in the parameters of the ultralocal model and ESO compared to the model-based solutions.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"1042-1057\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675355\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675355/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10675355/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

减少共模电压(CMV)波动对于无变压器(T-less)转换器至关重要。由于电压矢量的数量减少,基于调制修改的方法会固有地增加比较电流的稳态误差。这种误差会大大增加逆变器输出电流的总谐波失真(THD)。本研究提出了一种基于无模型预测控制的奇数虚拟矢量策略,利用扩展状态观测器 (ESO) 来解决 CMV 波动问题,并显著降低输出电流的总谐波失真 (THD)。这意味着 CMV 稳定矢量的数量会随着奇数电压矢量的线性组合而增加。与基于调制修改的 CMV 波动降低方案相比,所提出的方法有两个优点:在无 T 转换器中同时控制 CMV 稳定和 THD 降低;控制器独立于系统变量和参数,是一种稳健的预测控制方法。实际结果表明,与基于模型的解决方案相比,所提出的方法除了能完全实现 CMV 稳定和降低电流总谐波失真(THD)外,还能完全不受超局部模型和 ESO 参数变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Free Predictive Current Controller for Common Mode Voltage Stabilization by Finite odd Virtual Vector set
Reducing the common mode voltage (CMV) fluctuations is crucial in transformer-less (T-less) converters. The modulation modification-based methods inherently increase the steady-state error of the compared currents due to the reduced number of voltage vectors. This error can significantly raise the total harmonic distortion (THD) output current of the inverter. This research presents a strategy of odd virtual vectors based on model-free predictive control using the extended state observer (ESO) to fix the CMV fluctuations and a significant decrease in the THD of the output current. This means the number of CMV stabilizing vectors increases with the linear combination of odd voltage vectors. The proposed method has two advantages over CMV fluctuation reduction schemes that are modulation modification-based: simultaneous control of CMV stabilization and THD reduction in T-less converters, and independence of the controller from system variables and parameters, making it a robust predictive control method. The practical results show that the proposed method, in addition to the complete CMV stabilization and the reduction of the current THD, is completely robust to the changes in the parameters of the ultralocal model and ESO compared to the model-based solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Short-Term Control of Heat Pumps to Support Power Grid Operation Effects of Grid Voltage and Load Unbalances on the Efficiency of a Hybrid Distribution Transformer Enhanced PI Control Based SHC-PWM Strategy for Active Power Filters A Detailed Study on Algorithms for Predictive Maintenance in Smart Manufacturing: Chip Form Classification Using Edge Machine Learning Design and Evaluation of a Voice-Controlled Elevator System to Improve the Safety and Accessibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1