基于 Kolmogorov-Arnold 网络的电能系统建模白盒深度学习方法

Zhenghao Zhou, Yiyan Li, Zelin Guo, Zheng Yan, Mo-Yuen Chow
{"title":"基于 Kolmogorov-Arnold 网络的电能系统建模白盒深度学习方法","authors":"Zhenghao Zhou, Yiyan Li, Zelin Guo, Zheng Yan, Mo-Yuen Chow","doi":"arxiv-2409.08044","DOIUrl":null,"url":null,"abstract":"Deep learning methods have been widely used as an end-to-end modeling\nstrategy of electrical energy systems because of their conveniency and powerful\npattern recognition capability. However, due to the \"black-box\" nature, deep\nlearning methods have long been blamed for their poor interpretability when\nmodeling a physical system. In this paper, we introduce a novel neural network\nstructure, Kolmogorov-Arnold Network (KAN), to achieve \"white-box\" modeling for\nelectrical energy systems to enhance the interpretability. The most distinct\nfeature of KAN lies in the learnable activation function together with the\nsparse training and symbolification process. Consequently, KAN can express the\nphysical process with concise and explicit mathematical formulas while\nremaining the nonlinear-fitting capability of deep neural networks. Simulation\nresults based on three electrical energy systems demonstrate the effectiveness\nof KAN in the aspects of interpretability, accuracy, robustness and\ngeneralization ability.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A White-Box Deep-Learning Method for Electrical Energy System Modeling Based on Kolmogorov-Arnold Network\",\"authors\":\"Zhenghao Zhou, Yiyan Li, Zelin Guo, Zheng Yan, Mo-Yuen Chow\",\"doi\":\"arxiv-2409.08044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methods have been widely used as an end-to-end modeling\\nstrategy of electrical energy systems because of their conveniency and powerful\\npattern recognition capability. However, due to the \\\"black-box\\\" nature, deep\\nlearning methods have long been blamed for their poor interpretability when\\nmodeling a physical system. In this paper, we introduce a novel neural network\\nstructure, Kolmogorov-Arnold Network (KAN), to achieve \\\"white-box\\\" modeling for\\nelectrical energy systems to enhance the interpretability. The most distinct\\nfeature of KAN lies in the learnable activation function together with the\\nsparse training and symbolification process. Consequently, KAN can express the\\nphysical process with concise and explicit mathematical formulas while\\nremaining the nonlinear-fitting capability of deep neural networks. Simulation\\nresults based on three electrical energy systems demonstrate the effectiveness\\nof KAN in the aspects of interpretability, accuracy, robustness and\\ngeneralization ability.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习方法因其便捷性和强大的模式识别能力,已被广泛用作电能系统的端到端建模策略。然而,由于其 "黑箱 "特性,深度学习方法在物理系统建模时一直被指责为可解释性差。在本文中,我们引入了一种新型的神经网络结构--Kolmogorov-Arnold 网络(KAN),以实现对电能系统的 "白箱 "建模,从而提高可解释性。KAN 的最大特点在于其可学习的激活函数以及稀疏的训练和符号化过程。因此,KAN 可以用简洁明了的数学公式表达物理过程,同时保持深度神经网络的非线性拟合能力。基于三个电能系统的仿真结果证明了 KAN 在可解释性、准确性、鲁棒性和泛化能力等方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A White-Box Deep-Learning Method for Electrical Energy System Modeling Based on Kolmogorov-Arnold Network
Deep learning methods have been widely used as an end-to-end modeling strategy of electrical energy systems because of their conveniency and powerful pattern recognition capability. However, due to the "black-box" nature, deep learning methods have long been blamed for their poor interpretability when modeling a physical system. In this paper, we introduce a novel neural network structure, Kolmogorov-Arnold Network (KAN), to achieve "white-box" modeling for electrical energy systems to enhance the interpretability. The most distinct feature of KAN lies in the learnable activation function together with the sparse training and symbolification process. Consequently, KAN can express the physical process with concise and explicit mathematical formulas while remaining the nonlinear-fitting capability of deep neural networks. Simulation results based on three electrical energy systems demonstrate the effectiveness of KAN in the aspects of interpretability, accuracy, robustness and generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1