可靠性和通信约束条件下传感器网络中的共形分布式远程推理

Meiyi Zhu, Matteo Zecchin, Sangwoo Park, Caili Guo, Chunyan Feng, Petar Popovski, Osvaldo Simeone
{"title":"可靠性和通信约束条件下传感器网络中的共形分布式远程推理","authors":"Meiyi Zhu, Matteo Zecchin, Sangwoo Park, Caili Guo, Chunyan Feng, Petar Popovski, Osvaldo Simeone","doi":"arxiv-2409.07902","DOIUrl":null,"url":null,"abstract":"This paper presents communication-constrained distributed conformal risk\ncontrol (CD-CRC) framework, a novel decision-making framework for sensor\nnetworks under communication constraints. Targeting multi-label classification\nproblems, such as segmentation, CD-CRC dynamically adjusts local and global\nthresholds used to identify significant labels with the goal of ensuring a\ntarget false negative rate (FNR), while adhering to communication capacity\nlimits. CD-CRC builds on online exponentiated gradient descent to estimate the\nrelative quality of the observations of different sensors, and on online\nconformal risk control (CRC) as a mechanism to control local and global\nthresholds. CD-CRC is proved to offer deterministic worst-case performance\nguarantees in terms of FNR and communication overhead, while the regret\nperformance in terms of false positive rate (FPR) is characterized as a\nfunction of the key hyperparameters. Simulation results highlight the\neffectiveness of CD-CRC, particularly in communication resource-constrained\nenvironments, making it a valuable tool for enhancing the performance and\nreliability of distributed sensor networks.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal Distributed Remote Inference in Sensor Networks Under Reliability and Communication Constraints\",\"authors\":\"Meiyi Zhu, Matteo Zecchin, Sangwoo Park, Caili Guo, Chunyan Feng, Petar Popovski, Osvaldo Simeone\",\"doi\":\"arxiv-2409.07902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents communication-constrained distributed conformal risk\\ncontrol (CD-CRC) framework, a novel decision-making framework for sensor\\nnetworks under communication constraints. Targeting multi-label classification\\nproblems, such as segmentation, CD-CRC dynamically adjusts local and global\\nthresholds used to identify significant labels with the goal of ensuring a\\ntarget false negative rate (FNR), while adhering to communication capacity\\nlimits. CD-CRC builds on online exponentiated gradient descent to estimate the\\nrelative quality of the observations of different sensors, and on online\\nconformal risk control (CRC) as a mechanism to control local and global\\nthresholds. CD-CRC is proved to offer deterministic worst-case performance\\nguarantees in terms of FNR and communication overhead, while the regret\\nperformance in terms of false positive rate (FPR) is characterized as a\\nfunction of the key hyperparameters. Simulation results highlight the\\neffectiveness of CD-CRC, particularly in communication resource-constrained\\nenvironments, making it a valuable tool for enhancing the performance and\\nreliability of distributed sensor networks.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了通信约束分布式保形风险控制(CD-CRC)框架,这是一种适用于通信约束下传感器网络的新型决策框架。CD-CRC 以分割等多标签分类问题为目标,动态调整用于识别重要标签的局部和全局阈值,以确保达到目标假阴性率 (FNR),同时遵守通信容量限制。CD-CRC 基于在线指数梯度下降来估计不同传感器观测的相对质量,并基于在线形式风险控制(CRC)作为控制局部和全局阈值的机制。CD-CRC 被证明能在 FNR 和通信开销方面提供确定性的最坏情况性能保证,而在假阳性率 (FPR) 方面的遗憾性能则被描述为关键超参数的函数。仿真结果凸显了 CD-CRC 的有效性,尤其是在通信资源受限的环境中,使其成为提高分布式传感器网络性能和可靠性的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conformal Distributed Remote Inference in Sensor Networks Under Reliability and Communication Constraints
This paper presents communication-constrained distributed conformal risk control (CD-CRC) framework, a novel decision-making framework for sensor networks under communication constraints. Targeting multi-label classification problems, such as segmentation, CD-CRC dynamically adjusts local and global thresholds used to identify significant labels with the goal of ensuring a target false negative rate (FNR), while adhering to communication capacity limits. CD-CRC builds on online exponentiated gradient descent to estimate the relative quality of the observations of different sensors, and on online conformal risk control (CRC) as a mechanism to control local and global thresholds. CD-CRC is proved to offer deterministic worst-case performance guarantees in terms of FNR and communication overhead, while the regret performance in terms of false positive rate (FPR) is characterized as a function of the key hyperparameters. Simulation results highlight the effectiveness of CD-CRC, particularly in communication resource-constrained environments, making it a valuable tool for enhancing the performance and reliability of distributed sensor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1