在有干扰的多径信道中进行 DoA 估算的域自适应

Amitay Bar, Joseph S. Picard, Israel Cohen, Ronen Talmon
{"title":"在有干扰的多径信道中进行 DoA 估算的域自适应","authors":"Amitay Bar, Joseph S. Picard, Israel Cohen, Ronen Talmon","doi":"arxiv-2409.07782","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the direction-of-arrival (DoA) of a\ndesired source located in a known region of interest in the presence of\ninterfering sources and multipath. We propose an approach that precedes the DoA\nestimation and relies on generating a set of reference steering vectors. The\nsteering vectors' generative model is a free space model, which is beneficial\nfor many DoA estimation algorithms. The set of reference steering vectors is\nthen used to compute a function that maps the received signals from the adverse\nenvironment to a reference domain free from interfering sources and multipath.\nWe show theoretically and empirically that the proposed map, which is analogous\nto domain adaption, improves DoA estimation by mitigating interference and\nmultipath effects. Specifically, we demonstrate a substantial improvement in\naccuracy when the proposed approach is applied before three commonly used\nbeamformers: the delay-and-sum (DS), the minimum variance distortionless\nresponse (MVDR), and the Multiple Signal Classification (MUSIC).","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Adaptation for DoA Estimation in Multipath Channels with Interferences\",\"authors\":\"Amitay Bar, Joseph S. Picard, Israel Cohen, Ronen Talmon\",\"doi\":\"arxiv-2409.07782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating the direction-of-arrival (DoA) of a\\ndesired source located in a known region of interest in the presence of\\ninterfering sources and multipath. We propose an approach that precedes the DoA\\nestimation and relies on generating a set of reference steering vectors. The\\nsteering vectors' generative model is a free space model, which is beneficial\\nfor many DoA estimation algorithms. The set of reference steering vectors is\\nthen used to compute a function that maps the received signals from the adverse\\nenvironment to a reference domain free from interfering sources and multipath.\\nWe show theoretically and empirically that the proposed map, which is analogous\\nto domain adaption, improves DoA estimation by mitigating interference and\\nmultipath effects. Specifically, we demonstrate a substantial improvement in\\naccuracy when the proposed approach is applied before three commonly used\\nbeamformers: the delay-and-sum (DS), the minimum variance distortionless\\nresponse (MVDR), and the Multiple Signal Classification (MUSIC).\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是,在存在干扰源和多径的情况下,如何估计位于已知感兴趣区域内的目标信号源的到达方向(DoA)。我们提出了一种先于到达方向估计的方法,它依赖于生成一组参考转向矢量。转向矢量的生成模型是一个自由空间模型,这对许多 DoA 估计算法都有好处。参考转向矢量集随后被用来计算一个函数,该函数将从不利环境中接收到的信号映射到一个没有干扰源和多径的参考域中。我们从理论和经验上证明,所提出的映射(类似于域自适应)可通过减轻干扰和多径效应来改进 DoA 估计。具体来说,我们证明了在三种常用波束形成器(延迟与和(DS)、最小方差无失真响应(MVDR)和多信号分类(MUSIC))之前应用所提出的方法时,可大幅改善误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain Adaptation for DoA Estimation in Multipath Channels with Interferences
We consider the problem of estimating the direction-of-arrival (DoA) of a desired source located in a known region of interest in the presence of interfering sources and multipath. We propose an approach that precedes the DoA estimation and relies on generating a set of reference steering vectors. The steering vectors' generative model is a free space model, which is beneficial for many DoA estimation algorithms. The set of reference steering vectors is then used to compute a function that maps the received signals from the adverse environment to a reference domain free from interfering sources and multipath. We show theoretically and empirically that the proposed map, which is analogous to domain adaption, improves DoA estimation by mitigating interference and multipath effects. Specifically, we demonstrate a substantial improvement in accuracy when the proposed approach is applied before three commonly used beamformers: the delay-and-sum (DS), the minimum variance distortionless response (MVDR), and the Multiple Signal Classification (MUSIC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1