利用变异自编码器解决信道估计中的先导污染问题

Amar Kasibovic, Benedikt Fesl, Michael Baur, Wolfgang Utschick
{"title":"利用变异自编码器解决信道估计中的先导污染问题","authors":"Amar Kasibovic, Benedikt Fesl, Michael Baur, Wolfgang Utschick","doi":"arxiv-2409.07071","DOIUrl":null,"url":null,"abstract":"Pilot contamination (PC) is a well-known problem that affects massive\nmultiple-input multiple-output (MIMO) systems. When frequency and pilots are\nreused between different cells, PC constitutes one of the main bottlenecks of\nthe system's performance. In this paper, we propose a method based on the\nvariational autoencoder (VAE), capable of reducing the impact of PC-related\ninterference during channel estimation (CE). We obtain the first and\nsecond-order statistics of the conditionally Gaussian (CG) channels for both\nthe user equipments (UEs) in a cell of interest and those in interfering cells,\nand we then use these moments to compute conditional linear minimum mean square\nerror estimates. We show that the proposed estimator is capable of exploiting\nthe interferers' additional statistical knowledge, outperforming other\nclassical approaches. Moreover, we highlight how the achievable performance is\ntied to the chosen setup, making the setup selection crucial in the study of\nmulti-cell CE.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing Pilot Contamination in Channel Estimation with Variational Autoencoders\",\"authors\":\"Amar Kasibovic, Benedikt Fesl, Michael Baur, Wolfgang Utschick\",\"doi\":\"arxiv-2409.07071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pilot contamination (PC) is a well-known problem that affects massive\\nmultiple-input multiple-output (MIMO) systems. When frequency and pilots are\\nreused between different cells, PC constitutes one of the main bottlenecks of\\nthe system's performance. In this paper, we propose a method based on the\\nvariational autoencoder (VAE), capable of reducing the impact of PC-related\\ninterference during channel estimation (CE). We obtain the first and\\nsecond-order statistics of the conditionally Gaussian (CG) channels for both\\nthe user equipments (UEs) in a cell of interest and those in interfering cells,\\nand we then use these moments to compute conditional linear minimum mean square\\nerror estimates. We show that the proposed estimator is capable of exploiting\\nthe interferers' additional statistical knowledge, outperforming other\\nclassical approaches. Moreover, we highlight how the achievable performance is\\ntied to the chosen setup, making the setup selection crucial in the study of\\nmulti-cell CE.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先导污染(PC)是影响大规模多输入多输出(MIMO)系统的一个众所周知的问题。当频率和先导在不同小区之间使用时,PC 是系统性能的主要瓶颈之一。本文提出了一种基于变量自动编码器(VAE)的方法,能够在信道估计(CE)过程中减少 PC 相关干扰的影响。我们获得了相关小区用户设备(UE)和干扰小区用户设备(UE)的条件高斯(CG)信道的一阶和二阶统计量,然后利用这些矩来计算条件线性最小均方误差估计值。我们的研究表明,所提出的估计器能够利用干扰者的额外统计知识,其性能优于其他经典方法。此外,我们还强调了可实现的性能与所选设置的关系,从而使设置选择在多小区 CE 研究中变得至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing Pilot Contamination in Channel Estimation with Variational Autoencoders
Pilot contamination (PC) is a well-known problem that affects massive multiple-input multiple-output (MIMO) systems. When frequency and pilots are reused between different cells, PC constitutes one of the main bottlenecks of the system's performance. In this paper, we propose a method based on the variational autoencoder (VAE), capable of reducing the impact of PC-related interference during channel estimation (CE). We obtain the first and second-order statistics of the conditionally Gaussian (CG) channels for both the user equipments (UEs) in a cell of interest and those in interfering cells, and we then use these moments to compute conditional linear minimum mean square error estimates. We show that the proposed estimator is capable of exploiting the interferers' additional statistical knowledge, outperforming other classical approaches. Moreover, we highlight how the achievable performance is tied to the chosen setup, making the setup selection crucial in the study of multi-cell CE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1