利用在真实环境中收集的智能手表血压信号进行多类心律失常分类

Dong Han, Jihye Moon, Luís Roberto Mercado Díaz, Darren Chen, Devan Williams, Eric Y. Ding, Khanh-Van Tran, David D. McManus, Ki H. Chon
{"title":"利用在真实环境中收集的智能手表血压信号进行多类心律失常分类","authors":"Dong Han, Jihye Moon, Luís Roberto Mercado Díaz, Darren Chen, Devan Williams, Eric Y. Ding, Khanh-Van Tran, David D. McManus, Ki H. Chon","doi":"arxiv-2409.06147","DOIUrl":null,"url":null,"abstract":"Most deep learning models of multiclass arrhythmia classification are tested\non fingertip photoplethysmographic (PPG) data, which has higher signal-to-noise\nratios compared to smartwatch-derived PPG, and the best reported sensitivity\nvalue for premature atrial/ventricular contraction (PAC/PVC) detection is only\n75%. To improve upon PAC/PVC detection sensitivity while maintaining high AF\ndetection, we use multi-modal data which incorporates 1D PPG, accelerometers,\nand heart rate data as the inputs to a computationally efficient 1D\nbi-directional Gated Recurrent Unit (1D-Bi-GRU) model to detect three\narrhythmia classes. We used motion-artifact prone smartwatch PPG data from the\nNIH-funded Pulsewatch clinical trial. Our multimodal model tested on 72\nsubjects achieved an unprecedented 83% sensitivity for PAC/PVC detection while\nmaintaining a high accuracy of 97.31% for AF detection. These results\noutperformed the best state-of-the-art model by 20.81% for PAC/PVC and 2.55%\nfor AF detection even while our model was computationally more efficient (14\ntimes lighter and 2.7 faster).","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiclass Arrhythmia Classification using Smartwatch Photoplethysmography Signals Collected in Real-life Settings\",\"authors\":\"Dong Han, Jihye Moon, Luís Roberto Mercado Díaz, Darren Chen, Devan Williams, Eric Y. Ding, Khanh-Van Tran, David D. McManus, Ki H. Chon\",\"doi\":\"arxiv-2409.06147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most deep learning models of multiclass arrhythmia classification are tested\\non fingertip photoplethysmographic (PPG) data, which has higher signal-to-noise\\nratios compared to smartwatch-derived PPG, and the best reported sensitivity\\nvalue for premature atrial/ventricular contraction (PAC/PVC) detection is only\\n75%. To improve upon PAC/PVC detection sensitivity while maintaining high AF\\ndetection, we use multi-modal data which incorporates 1D PPG, accelerometers,\\nand heart rate data as the inputs to a computationally efficient 1D\\nbi-directional Gated Recurrent Unit (1D-Bi-GRU) model to detect three\\narrhythmia classes. We used motion-artifact prone smartwatch PPG data from the\\nNIH-funded Pulsewatch clinical trial. Our multimodal model tested on 72\\nsubjects achieved an unprecedented 83% sensitivity for PAC/PVC detection while\\nmaintaining a high accuracy of 97.31% for AF detection. These results\\noutperformed the best state-of-the-art model by 20.81% for PAC/PVC and 2.55%\\nfor AF detection even while our model was computationally more efficient (14\\ntimes lighter and 2.7 faster).\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数多类心律失常分类的深度学习模型都是在指尖光电血压计(PPG)数据上进行测试的,而指尖光电血压计与智能手表衍生的 PPG 相比具有更高的信噪比,所报告的房性早搏/室性早搏(PAC/PVC)检测的最佳灵敏度值仅为 75%。为了提高 PAC/PVC 检测灵敏度,同时保持较高的房颤检测灵敏度,我们使用了多模态数据,将一维 PPG、加速计和心率数据作为计算效率较高的一维偏向门控循环单元(1D-Bi-GRU)模型的输入,以检测三类心律失常。我们使用了由美国国立卫生研究院(NIH)资助的 Pulsewatch 临床试验中易产生运动伪影的智能手表 PPG 数据。我们在 72 名受试者身上测试的多模态模型在 PAC/PVC 检测方面达到了前所未有的 83% 的灵敏度,同时在房颤检测方面保持了 97.31% 的高准确度。这些结果在 PAC/PVC 和房颤检测方面分别比最先进的模型高出 20.81% 和 2.55%,而我们的模型计算效率更高(重量轻 14 倍,速度快 2.7 倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiclass Arrhythmia Classification using Smartwatch Photoplethysmography Signals Collected in Real-life Settings
Most deep learning models of multiclass arrhythmia classification are tested on fingertip photoplethysmographic (PPG) data, which has higher signal-to-noise ratios compared to smartwatch-derived PPG, and the best reported sensitivity value for premature atrial/ventricular contraction (PAC/PVC) detection is only 75%. To improve upon PAC/PVC detection sensitivity while maintaining high AF detection, we use multi-modal data which incorporates 1D PPG, accelerometers, and heart rate data as the inputs to a computationally efficient 1D bi-directional Gated Recurrent Unit (1D-Bi-GRU) model to detect three arrhythmia classes. We used motion-artifact prone smartwatch PPG data from the NIH-funded Pulsewatch clinical trial. Our multimodal model tested on 72 subjects achieved an unprecedented 83% sensitivity for PAC/PVC detection while maintaining a high accuracy of 97.31% for AF detection. These results outperformed the best state-of-the-art model by 20.81% for PAC/PVC and 2.55% for AF detection even while our model was computationally more efficient (14 times lighter and 2.7 faster).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1