Eliana S. Lemos, Evelyn M. Valdés Rodríguez, Adrián Bonilla Petriciolet, Andrea M. Ray and Leticia B. Escudero
{"title":"用于去除天然水和工业废水中五价砷的新型氧化石墨烯-微藻混合材料","authors":"Eliana S. Lemos, Evelyn M. Valdés Rodríguez, Adrián Bonilla Petriciolet, Andrea M. Ray and Leticia B. Escudero","doi":"10.1039/D4EW00308J","DOIUrl":null,"url":null,"abstract":"<p >In this study, a hybrid bionanomaterial (GO@Di) composed of <em>Dictyosphaerium</em> sp. microalgae and graphene oxide (GO) was synthesized for the first time to be used as an adsorbent for the removal of pentavalent arsenic (As(<small>V</small>)) from aqueous solutions. GO@Di was characterized by analytical techniques including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), pH at point of zero charge (pH<small><sub>PZC</sub></small>), and BET surface analysis. Solution pH, adsorbent mass, initial concentration of the pollutant, and ionic strength were evaluated and optimized to identify the best conditions for As(<small>V</small>) removal using GO@Di. A removal efficiency of 69% and an adsorption capacity of 885 mg g<small><sup>−1</sup></small> were obtained under the optimal conditions of pH 3, 1 mg of GO@Di and initial As(<small>V</small>) concentration of 50 mg L<small><sup>−1</sup></small>. The adsorption kinetics were also analyzed, reaching the equilibrium at 120 min. The experimental kinetic results were correlated with the pseudo-second order model. Equilibrium data were fitted with the Brunauer–Emmett–Teller (BET) isotherm model. Regeneration studies indicated that GO@Di could be re-used efficiently up to 4 adsorption/desorption cycles. Finally, GO@Di was applied to real samples of natural waters and industrial effluents, obtaining removal percentages between 52 and 95%, which demonstrated the promising potential of GO@Di to depollute complex aqueous matrices containing As(<small>V</small>). Future studies will focus on the removal of other arsenical species using GO@Di and its implementation in dynamic adsorption systems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel graphene oxide–microalgae hybrid material for the removal of pentavalent arsenic from natural water and industrial wastewater\",\"authors\":\"Eliana S. Lemos, Evelyn M. Valdés Rodríguez, Adrián Bonilla Petriciolet, Andrea M. Ray and Leticia B. Escudero\",\"doi\":\"10.1039/D4EW00308J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, a hybrid bionanomaterial (GO@Di) composed of <em>Dictyosphaerium</em> sp. microalgae and graphene oxide (GO) was synthesized for the first time to be used as an adsorbent for the removal of pentavalent arsenic (As(<small>V</small>)) from aqueous solutions. GO@Di was characterized by analytical techniques including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), pH at point of zero charge (pH<small><sub>PZC</sub></small>), and BET surface analysis. Solution pH, adsorbent mass, initial concentration of the pollutant, and ionic strength were evaluated and optimized to identify the best conditions for As(<small>V</small>) removal using GO@Di. A removal efficiency of 69% and an adsorption capacity of 885 mg g<small><sup>−1</sup></small> were obtained under the optimal conditions of pH 3, 1 mg of GO@Di and initial As(<small>V</small>) concentration of 50 mg L<small><sup>−1</sup></small>. The adsorption kinetics were also analyzed, reaching the equilibrium at 120 min. The experimental kinetic results were correlated with the pseudo-second order model. Equilibrium data were fitted with the Brunauer–Emmett–Teller (BET) isotherm model. Regeneration studies indicated that GO@Di could be re-used efficiently up to 4 adsorption/desorption cycles. Finally, GO@Di was applied to real samples of natural waters and industrial effluents, obtaining removal percentages between 52 and 95%, which demonstrated the promising potential of GO@Di to depollute complex aqueous matrices containing As(<small>V</small>). Future studies will focus on the removal of other arsenical species using GO@Di and its implementation in dynamic adsorption systems.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00308j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00308j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel graphene oxide–microalgae hybrid material for the removal of pentavalent arsenic from natural water and industrial wastewater
In this study, a hybrid bionanomaterial (GO@Di) composed of Dictyosphaerium sp. microalgae and graphene oxide (GO) was synthesized for the first time to be used as an adsorbent for the removal of pentavalent arsenic (As(V)) from aqueous solutions. GO@Di was characterized by analytical techniques including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), pH at point of zero charge (pHPZC), and BET surface analysis. Solution pH, adsorbent mass, initial concentration of the pollutant, and ionic strength were evaluated and optimized to identify the best conditions for As(V) removal using GO@Di. A removal efficiency of 69% and an adsorption capacity of 885 mg g−1 were obtained under the optimal conditions of pH 3, 1 mg of GO@Di and initial As(V) concentration of 50 mg L−1. The adsorption kinetics were also analyzed, reaching the equilibrium at 120 min. The experimental kinetic results were correlated with the pseudo-second order model. Equilibrium data were fitted with the Brunauer–Emmett–Teller (BET) isotherm model. Regeneration studies indicated that GO@Di could be re-used efficiently up to 4 adsorption/desorption cycles. Finally, GO@Di was applied to real samples of natural waters and industrial effluents, obtaining removal percentages between 52 and 95%, which demonstrated the promising potential of GO@Di to depollute complex aqueous matrices containing As(V). Future studies will focus on the removal of other arsenical species using GO@Di and its implementation in dynamic adsorption systems.