{"title":"利用非医疗和医疗干预措施优化流行病控制","authors":"Alexandra Smirnova, Mona Baroonian, Xiaojing Ye","doi":"10.3390/math12182811","DOIUrl":null,"url":null,"abstract":"In this study, we investigate different epidemic control scenarios through theoretical analysis and numerical simulations. To account for two important types of control at the early ascending stage of an outbreak, nonmedical interventions, and medical treatments, a compartmental model is considered with the first control aimed at lowering the disease transmission rate through behavioral changes and the second control set to lower the period of infectiousness by means of antiviral medications and other forms of medical care. In all experiments, the implementation of control strategies reduces the daily cumulative number of cases and successfully “flattens the curve”. The reduction in the cumulative cases is achieved by eliminating or delaying new cases. This delay is incredibly valuable, as it provides public health organizations with more time to advance antiviral treatments and devise alternative preventive measures. The main theoretical result of the paper, Theorem 1, concludes that the two optimal control functions may be increasing initially. However, beyond a certain point, both controls decline (possibly causing the number of newly infected people to grow). The numerical simulations conducted by the authors confirm theoretical findings, which indicates that, ideally, around the time that early interventions become less effective, the control strategy must be upgraded through the addition of new and improved tools, such as vaccines, therapeutics, testing, air ventilation, and others, in order to successfully battle the virus going forward.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Epidemic Control with Nonmedical and Medical Interventions\",\"authors\":\"Alexandra Smirnova, Mona Baroonian, Xiaojing Ye\",\"doi\":\"10.3390/math12182811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate different epidemic control scenarios through theoretical analysis and numerical simulations. To account for two important types of control at the early ascending stage of an outbreak, nonmedical interventions, and medical treatments, a compartmental model is considered with the first control aimed at lowering the disease transmission rate through behavioral changes and the second control set to lower the period of infectiousness by means of antiviral medications and other forms of medical care. In all experiments, the implementation of control strategies reduces the daily cumulative number of cases and successfully “flattens the curve”. The reduction in the cumulative cases is achieved by eliminating or delaying new cases. This delay is incredibly valuable, as it provides public health organizations with more time to advance antiviral treatments and devise alternative preventive measures. The main theoretical result of the paper, Theorem 1, concludes that the two optimal control functions may be increasing initially. However, beyond a certain point, both controls decline (possibly causing the number of newly infected people to grow). The numerical simulations conducted by the authors confirm theoretical findings, which indicates that, ideally, around the time that early interventions become less effective, the control strategy must be upgraded through the addition of new and improved tools, such as vaccines, therapeutics, testing, air ventilation, and others, in order to successfully battle the virus going forward.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Optimal Epidemic Control with Nonmedical and Medical Interventions
In this study, we investigate different epidemic control scenarios through theoretical analysis and numerical simulations. To account for two important types of control at the early ascending stage of an outbreak, nonmedical interventions, and medical treatments, a compartmental model is considered with the first control aimed at lowering the disease transmission rate through behavioral changes and the second control set to lower the period of infectiousness by means of antiviral medications and other forms of medical care. In all experiments, the implementation of control strategies reduces the daily cumulative number of cases and successfully “flattens the curve”. The reduction in the cumulative cases is achieved by eliminating or delaying new cases. This delay is incredibly valuable, as it provides public health organizations with more time to advance antiviral treatments and devise alternative preventive measures. The main theoretical result of the paper, Theorem 1, concludes that the two optimal control functions may be increasing initially. However, beyond a certain point, both controls decline (possibly causing the number of newly infected people to grow). The numerical simulations conducted by the authors confirm theoretical findings, which indicates that, ideally, around the time that early interventions become less effective, the control strategy must be upgraded through the addition of new and improved tools, such as vaccines, therapeutics, testing, air ventilation, and others, in order to successfully battle the virus going forward.