Wei Tian, Weiqian Zhou, Shi Huang, Qiuyun Qin, Weilong Fang, Lijie Zhou, Xihong Yang
{"title":"基于网络药理学、分子对接和实验验证的安昌煎剂抗炎作用机制","authors":"Wei Tian, Weiqian Zhou, Shi Huang, Qiuyun Qin, Weilong Fang, Lijie Zhou, Xihong Yang","doi":"10.1177/1934578x241281571","DOIUrl":null,"url":null,"abstract":"ContextA prescription medication called Anchang Decoction (ACD) has anti-inflammatory properties.ObjectiveTo evaluate the mechanism of ACD against inflammation.Materials and methodsThe “pharmacodynamic constituents - potential targets” and “protein interaction networks” were mapped using Cytoscape software and the STRING database, respectively. The degree of binding between important pharmacodynamic components of ACD and possible targets was then examined using molecular docking analysis using Autodock Vina and PyMOL software, and GO and KEGG pathway enrichment analysis using the David database and the Weishengxin online tool. These findings were eventually confirmed in vitro.ResultsAfter the intersection of the two, 539 inflammatory targets and 217 related targets, 34 main active components, and 42 potential anti-inflammatory targets were obtained. These include AKT1, MAPK14, SRC, EGFR, GSK3B, MMP9, MMP2, PTGS2, SYK, ESR1, and MMP2 and GO enrichment results. These three key targets are chosen as downstream validation targets for experimental verification. Furthermore, the colonic tissue and mucosa of ACD group were undamaged in comparison to the model group, and there was no sign of inflammatory cell infiltration. According to CCK-8 data, treatment with 20% ACD drug-containing serum resulted in a significant increase in RAW264.7 cell viability (P < 0.05) when compared to the normal serum group; Serum of ACD-containing medication may considerably lower the NO content of macrophage inflammation and prevent the production of inflammatory markers like TNF-α and IL-6 (P < 0.05); The expression levels of AKT1, MAPK14, and SRC proteins were considerably reduced by ACD in RAW264.7 macrophage inflammation, according to Western Blot data (P < 0.05).Discussion and conclusionsACD exerts anti-inflammatory effects through multi-component interaction with the target, and the mechanism may involve the inhibition of the release of inflammatory cytokines by AKT, MAPK and non-receptor tyrosine kinase signaling pathways. Here, the molecular mechanism of ACD against inflammation was partially clarified and experimentally validated, offering theoretical evidence for more effective clinical application.","PeriodicalId":19019,"journal":{"name":"Natural Product Communications","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Anchang Decoction in Treatment of Anti-Inflammatory Effect Based on Network Pharmacology, Molecular Docking and Experimental Verification\",\"authors\":\"Wei Tian, Weiqian Zhou, Shi Huang, Qiuyun Qin, Weilong Fang, Lijie Zhou, Xihong Yang\",\"doi\":\"10.1177/1934578x241281571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ContextA prescription medication called Anchang Decoction (ACD) has anti-inflammatory properties.ObjectiveTo evaluate the mechanism of ACD against inflammation.Materials and methodsThe “pharmacodynamic constituents - potential targets” and “protein interaction networks” were mapped using Cytoscape software and the STRING database, respectively. The degree of binding between important pharmacodynamic components of ACD and possible targets was then examined using molecular docking analysis using Autodock Vina and PyMOL software, and GO and KEGG pathway enrichment analysis using the David database and the Weishengxin online tool. These findings were eventually confirmed in vitro.ResultsAfter the intersection of the two, 539 inflammatory targets and 217 related targets, 34 main active components, and 42 potential anti-inflammatory targets were obtained. These include AKT1, MAPK14, SRC, EGFR, GSK3B, MMP9, MMP2, PTGS2, SYK, ESR1, and MMP2 and GO enrichment results. These three key targets are chosen as downstream validation targets for experimental verification. Furthermore, the colonic tissue and mucosa of ACD group were undamaged in comparison to the model group, and there was no sign of inflammatory cell infiltration. According to CCK-8 data, treatment with 20% ACD drug-containing serum resulted in a significant increase in RAW264.7 cell viability (P < 0.05) when compared to the normal serum group; Serum of ACD-containing medication may considerably lower the NO content of macrophage inflammation and prevent the production of inflammatory markers like TNF-α and IL-6 (P < 0.05); The expression levels of AKT1, MAPK14, and SRC proteins were considerably reduced by ACD in RAW264.7 macrophage inflammation, according to Western Blot data (P < 0.05).Discussion and conclusionsACD exerts anti-inflammatory effects through multi-component interaction with the target, and the mechanism may involve the inhibition of the release of inflammatory cytokines by AKT, MAPK and non-receptor tyrosine kinase signaling pathways. Here, the molecular mechanism of ACD against inflammation was partially clarified and experimentally validated, offering theoretical evidence for more effective clinical application.\",\"PeriodicalId\":19019,\"journal\":{\"name\":\"Natural Product Communications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1934578x241281571\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1934578x241281571","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Mechanism of Anchang Decoction in Treatment of Anti-Inflammatory Effect Based on Network Pharmacology, Molecular Docking and Experimental Verification
ContextA prescription medication called Anchang Decoction (ACD) has anti-inflammatory properties.ObjectiveTo evaluate the mechanism of ACD against inflammation.Materials and methodsThe “pharmacodynamic constituents - potential targets” and “protein interaction networks” were mapped using Cytoscape software and the STRING database, respectively. The degree of binding between important pharmacodynamic components of ACD and possible targets was then examined using molecular docking analysis using Autodock Vina and PyMOL software, and GO and KEGG pathway enrichment analysis using the David database and the Weishengxin online tool. These findings were eventually confirmed in vitro.ResultsAfter the intersection of the two, 539 inflammatory targets and 217 related targets, 34 main active components, and 42 potential anti-inflammatory targets were obtained. These include AKT1, MAPK14, SRC, EGFR, GSK3B, MMP9, MMP2, PTGS2, SYK, ESR1, and MMP2 and GO enrichment results. These three key targets are chosen as downstream validation targets for experimental verification. Furthermore, the colonic tissue and mucosa of ACD group were undamaged in comparison to the model group, and there was no sign of inflammatory cell infiltration. According to CCK-8 data, treatment with 20% ACD drug-containing serum resulted in a significant increase in RAW264.7 cell viability (P < 0.05) when compared to the normal serum group; Serum of ACD-containing medication may considerably lower the NO content of macrophage inflammation and prevent the production of inflammatory markers like TNF-α and IL-6 (P < 0.05); The expression levels of AKT1, MAPK14, and SRC proteins were considerably reduced by ACD in RAW264.7 macrophage inflammation, according to Western Blot data (P < 0.05).Discussion and conclusionsACD exerts anti-inflammatory effects through multi-component interaction with the target, and the mechanism may involve the inhibition of the release of inflammatory cytokines by AKT, MAPK and non-receptor tyrosine kinase signaling pathways. Here, the molecular mechanism of ACD against inflammation was partially clarified and experimentally validated, offering theoretical evidence for more effective clinical application.
期刊介绍:
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.