山奈酚通过调节 RAS 系统和 AMPK/Arg2/eNOS 信号通路保护高海拔肺动脉高压大鼠的肺血管内皮功能

IF 1.5 4区 医学 Q4 CHEMISTRY, MEDICINAL Natural Product Communications Pub Date : 2024-08-22 DOI:10.1177/1934578x241274896
Xin Xie, Huiru Li, Liangqi Wang, Xiaonan Zhang, Dianxiang Lu, Zhanqiang Li
{"title":"山奈酚通过调节 RAS 系统和 AMPK/Arg2/eNOS 信号通路保护高海拔肺动脉高压大鼠的肺血管内皮功能","authors":"Xin Xie, Huiru Li, Liangqi Wang, Xiaonan Zhang, Dianxiang Lu, Zhanqiang Li","doi":"10.1177/1934578x241274896","DOIUrl":null,"url":null,"abstract":"BackgroundPrevious studies have found that kaempferol can relieve pulmonary hypertension (PH).ObjectiveExplore the protective impact of kaempferol on pulmonary vascular endothelium in rats with high altitude pulmonary hypertension (HAPH).Materials and methodsIn a simulated altitude of 5000 m environment, rats were induced to develop HAPH after continuous intragastric administration of kaempferol (25, 50 and 100 mg·kg<jats:sup>−1</jats:sup>) and Sildenafil (30 mg·kg<jats:sup>−1</jats:sup>) for 28 days. Assessment of isolated pulmonary arterial rings in rats and relevant indicators in lung tissue was performed, with the mechanism of action investigated using Western blotting.ResultsKaempferol effectively dilates rat pulmonary arterial rings, with an EC<jats:sub>50</jats:sub> of 55.75 μmol/L. L-NAME can effectively counteract the vasodilatory effect of kaempferol. Acetylcholine demonstrated better relaxation of pulmonary arterial rings in HAPH rats after kaempferol intervention. Elastic Van Gieson staining (EVG) and immunohistochemistry (CD31) results indicate that kaempferol can partially protect pulmonary vascular endothelial function in HAPH rats. Western blotting reveals that kaempferol has the ability to regulate the Renin-Angiotensin System (RAS). This leads to a compensatory increase in eNOS expression, upregulation of AMPK activity, and downregulation of eNOS monomer/dimer levels.ConclusionsKaempferol can improve pulmonary vascular endothelial dysfunction caused by chronic hypoxia by upregulating the phosphorylation level of AMPK, regulating the RAS system, and inhibiting eNOS uncoupling, thereby achieving vasodilation and endothelial protection.","PeriodicalId":19019,"journal":{"name":"Natural Product Communications","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kaempferol Protects Pulmonary Vascular Endothelial Function in Rats with High Altitude Pulmonary Hypertension by Regulating RAS System and AMPK/Arg2/eNOS Signaling Pathway\",\"authors\":\"Xin Xie, Huiru Li, Liangqi Wang, Xiaonan Zhang, Dianxiang Lu, Zhanqiang Li\",\"doi\":\"10.1177/1934578x241274896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BackgroundPrevious studies have found that kaempferol can relieve pulmonary hypertension (PH).ObjectiveExplore the protective impact of kaempferol on pulmonary vascular endothelium in rats with high altitude pulmonary hypertension (HAPH).Materials and methodsIn a simulated altitude of 5000 m environment, rats were induced to develop HAPH after continuous intragastric administration of kaempferol (25, 50 and 100 mg·kg<jats:sup>−1</jats:sup>) and Sildenafil (30 mg·kg<jats:sup>−1</jats:sup>) for 28 days. Assessment of isolated pulmonary arterial rings in rats and relevant indicators in lung tissue was performed, with the mechanism of action investigated using Western blotting.ResultsKaempferol effectively dilates rat pulmonary arterial rings, with an EC<jats:sub>50</jats:sub> of 55.75 μmol/L. L-NAME can effectively counteract the vasodilatory effect of kaempferol. Acetylcholine demonstrated better relaxation of pulmonary arterial rings in HAPH rats after kaempferol intervention. Elastic Van Gieson staining (EVG) and immunohistochemistry (CD31) results indicate that kaempferol can partially protect pulmonary vascular endothelial function in HAPH rats. Western blotting reveals that kaempferol has the ability to regulate the Renin-Angiotensin System (RAS). This leads to a compensatory increase in eNOS expression, upregulation of AMPK activity, and downregulation of eNOS monomer/dimer levels.ConclusionsKaempferol can improve pulmonary vascular endothelial dysfunction caused by chronic hypoxia by upregulating the phosphorylation level of AMPK, regulating the RAS system, and inhibiting eNOS uncoupling, thereby achieving vasodilation and endothelial protection.\",\"PeriodicalId\":19019,\"journal\":{\"name\":\"Natural Product Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1934578x241274896\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1934578x241274896","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景先前的研究发现山奈酚可以缓解肺动脉高压(PH).目的探讨山奈酚对高海拔肺动脉高压(HAPH)大鼠肺血管内皮的保护作用.材料和方法在模拟海拔5000 m的环境中,连续胃内给予山奈酚(25、50和100 mg-kg-1)和西地那非(30 mg-kg-1)28天,诱导大鼠发生HAPH。结果 山奈酚能有效扩张大鼠肺动脉环,EC50 为 55.75 μmol/L。L-NAME 能有效抵消山奈酚的血管扩张作用。山奈酚干预后,乙酰胆碱能更好地松弛 HAPH 大鼠的肺动脉环。弹性范吉森染色(EVG)和免疫组化(CD31)结果表明,山奈酚能部分保护 HAPH 大鼠的肺血管内皮功能。Western 印迹分析表明,山奈酚具有调节肾素-血管紧张素系统(RAS)的能力。结论山奈酚可以通过上调 AMPK 磷酸化水平、调节 RAS 系统和抑制 eNOS 解偶联来改善慢性缺氧引起的肺血管内皮功能障碍,从而达到扩张血管和保护内皮的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kaempferol Protects Pulmonary Vascular Endothelial Function in Rats with High Altitude Pulmonary Hypertension by Regulating RAS System and AMPK/Arg2/eNOS Signaling Pathway
BackgroundPrevious studies have found that kaempferol can relieve pulmonary hypertension (PH).ObjectiveExplore the protective impact of kaempferol on pulmonary vascular endothelium in rats with high altitude pulmonary hypertension (HAPH).Materials and methodsIn a simulated altitude of 5000 m environment, rats were induced to develop HAPH after continuous intragastric administration of kaempferol (25, 50 and 100 mg·kg−1) and Sildenafil (30 mg·kg−1) for 28 days. Assessment of isolated pulmonary arterial rings in rats and relevant indicators in lung tissue was performed, with the mechanism of action investigated using Western blotting.ResultsKaempferol effectively dilates rat pulmonary arterial rings, with an EC50 of 55.75 μmol/L. L-NAME can effectively counteract the vasodilatory effect of kaempferol. Acetylcholine demonstrated better relaxation of pulmonary arterial rings in HAPH rats after kaempferol intervention. Elastic Van Gieson staining (EVG) and immunohistochemistry (CD31) results indicate that kaempferol can partially protect pulmonary vascular endothelial function in HAPH rats. Western blotting reveals that kaempferol has the ability to regulate the Renin-Angiotensin System (RAS). This leads to a compensatory increase in eNOS expression, upregulation of AMPK activity, and downregulation of eNOS monomer/dimer levels.ConclusionsKaempferol can improve pulmonary vascular endothelial dysfunction caused by chronic hypoxia by upregulating the phosphorylation level of AMPK, regulating the RAS system, and inhibiting eNOS uncoupling, thereby achieving vasodilation and endothelial protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Communications
Natural Product Communications 工程技术-食品科技
CiteScore
3.10
自引率
11.10%
发文量
254
审稿时长
2.7 months
期刊介绍: Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products. Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products. Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
期刊最新文献
The Influence of Weather Conditions on the Immortelle Volatile Constituents from Essential oil and Hydrosol with a Focus on Italidiones and Its Molecular Docking Anti-Inflammatory Potential Exploring the Mechanism of Huoxiang Zhengqi Oral Liquid Against Mosquito Bite Dermatitis Through Network Pharmacology and in Vitro Validation Astragalus Injection Enhances the Sensitivity of Clinical Cancer Patients to Chemotherapy: A Systematic meta-Analysis The Components of Buyang Huanwu Decoction with UPLC-MS Medicinal Plants as Effective Antiviral Agents and Their Potential Benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1