Chloe H. L. Hinchliffe, Mahinda Yogarajah, Samia Elkommos, Hongying Tang, Daniel Abasolo
{"title":"诊断功能性癫痫发作的非发作性脑电测量方法","authors":"Chloe H. L. Hinchliffe, Mahinda Yogarajah, Samia Elkommos, Hongying Tang, Daniel Abasolo","doi":"10.1111/epi.18110","DOIUrl":null,"url":null,"abstract":"ObjectiveFunctional seizures (FS) look like epileptic seizures but are characterized by a lack of epileptic activity in the brain. Approximately one in five referrals to epilepsy clinics are diagnosed with this condition. FS are diagnosed by recording a seizure using video‐electroencephalography (EEG), from which an expert inspects the semiology and the EEG. However, this method can be expensive and inaccessible and can present significant patient burden. No single biomarker has been found to diagnose FS. However, the current limitations in FS diagnosis could be improved with machine learning to classify signal features extracted from EEG, thus providing a potentially very useful aid to clinicians.MethodsThe current study has investigated the use of seizure‐free EEG signals with machine learning to identify subjects with FS from those with epilepsy. The dataset included interictal and preictal EEG recordings from 48 subjects with FS (mean age = 34.76 ± 10.55 years, 14 males) and 29 subjects with epilepsy (mean age = 38.95 ± 13.93 years, 18 males) from which various statistical, temporal, and spectral features from the five EEG frequency bands were extracted then analyzed with threshold accuracy, five machine learning classifiers, and two feature importance approaches.ResultsThe highest classification accuracy reported from thresholding was 60.67%. However, the temporal features were the best performing, with the highest balanced accuracy reported by the machine learning models: 95.71% with all frequency bands combined and a support vector machine classifier.SignificanceMachine learning was much more effective than using individual features and could be a powerful aid in FS diagnosis. Furthermore, combining the frequency bands improved the accuracy of the classifiers in most cases, and the lowest performing EEG bands were consistently delta and gamma.","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonictal electroencephalographic measures for the diagnosis of functional seizures\",\"authors\":\"Chloe H. L. Hinchliffe, Mahinda Yogarajah, Samia Elkommos, Hongying Tang, Daniel Abasolo\",\"doi\":\"10.1111/epi.18110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ObjectiveFunctional seizures (FS) look like epileptic seizures but are characterized by a lack of epileptic activity in the brain. Approximately one in five referrals to epilepsy clinics are diagnosed with this condition. FS are diagnosed by recording a seizure using video‐electroencephalography (EEG), from which an expert inspects the semiology and the EEG. However, this method can be expensive and inaccessible and can present significant patient burden. No single biomarker has been found to diagnose FS. However, the current limitations in FS diagnosis could be improved with machine learning to classify signal features extracted from EEG, thus providing a potentially very useful aid to clinicians.MethodsThe current study has investigated the use of seizure‐free EEG signals with machine learning to identify subjects with FS from those with epilepsy. The dataset included interictal and preictal EEG recordings from 48 subjects with FS (mean age = 34.76 ± 10.55 years, 14 males) and 29 subjects with epilepsy (mean age = 38.95 ± 13.93 years, 18 males) from which various statistical, temporal, and spectral features from the five EEG frequency bands were extracted then analyzed with threshold accuracy, five machine learning classifiers, and two feature importance approaches.ResultsThe highest classification accuracy reported from thresholding was 60.67%. However, the temporal features were the best performing, with the highest balanced accuracy reported by the machine learning models: 95.71% with all frequency bands combined and a support vector machine classifier.SignificanceMachine learning was much more effective than using individual features and could be a powerful aid in FS diagnosis. Furthermore, combining the frequency bands improved the accuracy of the classifiers in most cases, and the lowest performing EEG bands were consistently delta and gamma.\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/epi.18110\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18110","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Nonictal electroencephalographic measures for the diagnosis of functional seizures
ObjectiveFunctional seizures (FS) look like epileptic seizures but are characterized by a lack of epileptic activity in the brain. Approximately one in five referrals to epilepsy clinics are diagnosed with this condition. FS are diagnosed by recording a seizure using video‐electroencephalography (EEG), from which an expert inspects the semiology and the EEG. However, this method can be expensive and inaccessible and can present significant patient burden. No single biomarker has been found to diagnose FS. However, the current limitations in FS diagnosis could be improved with machine learning to classify signal features extracted from EEG, thus providing a potentially very useful aid to clinicians.MethodsThe current study has investigated the use of seizure‐free EEG signals with machine learning to identify subjects with FS from those with epilepsy. The dataset included interictal and preictal EEG recordings from 48 subjects with FS (mean age = 34.76 ± 10.55 years, 14 males) and 29 subjects with epilepsy (mean age = 38.95 ± 13.93 years, 18 males) from which various statistical, temporal, and spectral features from the five EEG frequency bands were extracted then analyzed with threshold accuracy, five machine learning classifiers, and two feature importance approaches.ResultsThe highest classification accuracy reported from thresholding was 60.67%. However, the temporal features were the best performing, with the highest balanced accuracy reported by the machine learning models: 95.71% with all frequency bands combined and a support vector machine classifier.SignificanceMachine learning was much more effective than using individual features and could be a powerful aid in FS diagnosis. Furthermore, combining the frequency bands improved the accuracy of the classifiers in most cases, and the lowest performing EEG bands were consistently delta and gamma.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.