Yusra Bahar Cakir, Miraslau Makarevich, Mikalai Bohdan, Tugba Celiker, Maksim Hulnik, Irina V. Vasilenko, Baris Kiskan, Sergei V. Kostjuk
{"title":"通过从阳离子到自由基过程的机理转变获得功能化聚异丁烯和聚异丁烯基嵌段共聚物","authors":"Yusra Bahar Cakir, Miraslau Makarevich, Mikalai Bohdan, Tugba Celiker, Maksim Hulnik, Irina V. Vasilenko, Baris Kiskan, Sergei V. Kostjuk","doi":"10.1002/macp.202400261","DOIUrl":null,"url":null,"abstract":"The strategy for the preparation of polyisobutylene‐based block copolymers via mechanistic transformation from cationic to radical polymerization is reported. This strategy involves the synthesis of 2‐bromo‐2‐methylpropanoyl‐terminated difunctional polyisobutylene macroinitiator (BiBB‐PIB‐BiBB) via consecutive cationic polymerization, in situ preparation of hydroxyl‐terminated polyisobutylene and its acylation by 2‐bromo‐2‐methylpropanoyl bromide. The Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub>−triggered photo‐induced radical polymerization of styrene in bulk using this macroinitiator leads to the formation of multiblock copolymer, while predominantly triblock copolymer is generated during the polymerization of methyl methacrylate. The possibility to functionalize the polyisobutylene by pyrene via photo‐induced radical addition of 1‐bromomethyl pyrene in the presence of Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub> is also demonstrated in this work.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"54 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized Polyisobutylene and Polyisobutylene‐Based Block Copolymers by Mechanistic Transformation from Cationic to Radical Process\",\"authors\":\"Yusra Bahar Cakir, Miraslau Makarevich, Mikalai Bohdan, Tugba Celiker, Maksim Hulnik, Irina V. Vasilenko, Baris Kiskan, Sergei V. Kostjuk\",\"doi\":\"10.1002/macp.202400261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strategy for the preparation of polyisobutylene‐based block copolymers via mechanistic transformation from cationic to radical polymerization is reported. This strategy involves the synthesis of 2‐bromo‐2‐methylpropanoyl‐terminated difunctional polyisobutylene macroinitiator (BiBB‐PIB‐BiBB) via consecutive cationic polymerization, in situ preparation of hydroxyl‐terminated polyisobutylene and its acylation by 2‐bromo‐2‐methylpropanoyl bromide. The Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub>−triggered photo‐induced radical polymerization of styrene in bulk using this macroinitiator leads to the formation of multiblock copolymer, while predominantly triblock copolymer is generated during the polymerization of methyl methacrylate. The possibility to functionalize the polyisobutylene by pyrene via photo‐induced radical addition of 1‐bromomethyl pyrene in the presence of Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub> is also demonstrated in this work.\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/macp.202400261\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/macp.202400261","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Functionalized Polyisobutylene and Polyisobutylene‐Based Block Copolymers by Mechanistic Transformation from Cationic to Radical Process
The strategy for the preparation of polyisobutylene‐based block copolymers via mechanistic transformation from cationic to radical polymerization is reported. This strategy involves the synthesis of 2‐bromo‐2‐methylpropanoyl‐terminated difunctional polyisobutylene macroinitiator (BiBB‐PIB‐BiBB) via consecutive cationic polymerization, in situ preparation of hydroxyl‐terminated polyisobutylene and its acylation by 2‐bromo‐2‐methylpropanoyl bromide. The Mn2(CO)10−triggered photo‐induced radical polymerization of styrene in bulk using this macroinitiator leads to the formation of multiblock copolymer, while predominantly triblock copolymer is generated during the polymerization of methyl methacrylate. The possibility to functionalize the polyisobutylene by pyrene via photo‐induced radical addition of 1‐bromomethyl pyrene in the presence of Mn2(CO)10 is also demonstrated in this work.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.