利用 Bi2MoO6/醋酸纤维素光催化膜进行可持续废水处理

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Particle & Particle Systems Characterization Pub Date : 2024-08-26 DOI:10.1002/ppsc.202400137
Velusamy Sasikala, Sakarapani Sarala, Palani Karthik, Prakash Natarajan, Azhagurajan Mukkannan
{"title":"利用 Bi2MoO6/醋酸纤维素光催化膜进行可持续废水处理","authors":"Velusamy Sasikala, Sakarapani Sarala, Palani Karthik, Prakash Natarajan, Azhagurajan Mukkannan","doi":"10.1002/ppsc.202400137","DOIUrl":null,"url":null,"abstract":"A major challenge for modern society is securing quality water for various uses. Membrane water treatment will be crucial for drinking water, desalination, and wastewater reuse. The development of bismuth molybdate (Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>) nanoparticles has enabled the production of novel Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>‐incorporated cellulose acetate (CA) membrane nanocomposite. The synthesized Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>/CA nanocomposites are thoroughly examined for their structural, morphological, and photocatalytic characteristics using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) analysis. The photocatalytic properties are determined by evaluating the degradation of Malachite Green (MG) and Rose Bengal (RB) by the nanocomposite membranes under the illumination of a UV light simulator. Notably, the Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>/CA nanocomposite membrane displays exceptional and sustained photocatalytic efficiency (78%) and (84%) in MG and RB dye degradation, respectively. Moreover, the effective loading of the Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub> onto the CA membrane enhances electron and hole adsorption while facilitating carrier movement. Furthermore, the stability exhibited by the Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>/CA nanocomposite photocatalysts remains impressive even after multiple cycles, demonstrating their durability. This research introduces a cutting‐edge semiconductor‐based hybrid nanocomposite material that proves highly efficient in the photocatalytic degradation of organic dyes, showcasing promising advancements in environmental remediation strategies.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"108 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Wastewater Treatment with Bi2MoO6/Cellulose Acetate Photocatalytic Membranes\",\"authors\":\"Velusamy Sasikala, Sakarapani Sarala, Palani Karthik, Prakash Natarajan, Azhagurajan Mukkannan\",\"doi\":\"10.1002/ppsc.202400137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major challenge for modern society is securing quality water for various uses. Membrane water treatment will be crucial for drinking water, desalination, and wastewater reuse. The development of bismuth molybdate (Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>) nanoparticles has enabled the production of novel Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>‐incorporated cellulose acetate (CA) membrane nanocomposite. The synthesized Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>/CA nanocomposites are thoroughly examined for their structural, morphological, and photocatalytic characteristics using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) analysis. The photocatalytic properties are determined by evaluating the degradation of Malachite Green (MG) and Rose Bengal (RB) by the nanocomposite membranes under the illumination of a UV light simulator. Notably, the Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>/CA nanocomposite membrane displays exceptional and sustained photocatalytic efficiency (78%) and (84%) in MG and RB dye degradation, respectively. Moreover, the effective loading of the Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub> onto the CA membrane enhances electron and hole adsorption while facilitating carrier movement. Furthermore, the stability exhibited by the Bi<jats:sub>2</jats:sub>MoO<jats:sub>6</jats:sub>/CA nanocomposite photocatalysts remains impressive even after multiple cycles, demonstrating their durability. This research introduces a cutting‐edge semiconductor‐based hybrid nanocomposite material that proves highly efficient in the photocatalytic degradation of organic dyes, showcasing promising advancements in environmental remediation strategies.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202400137\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400137","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

现代社会面临的一个重大挑战是确保各种用途的优质水。膜水处理对于饮用水、海水淡化和废水回用至关重要。钼酸铋(Bi2MoO6)纳米粒子的开发使新型 Bi2MoO6 嵌入醋酸纤维素(CA)膜纳米复合材料的生产成为可能。利用 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、X 射线光电子能谱 (XPS) 和扫描电子显微镜 (SEM) 以及能量色散 X 射线能谱 (EDX) 分析,对合成的 Bi2MoO6/CA 纳米复合材料的结构、形态和光催化特性进行了深入研究。通过评估纳米复合膜在紫外光模拟器照射下对孔雀石绿(MG)和玫瑰红(RB)的降解情况,确定了纳米复合膜的光催化性能。值得注意的是,Bi2MoO6/CA 纳米复合膜在降解孔雀石绿和玫瑰红染料方面分别表现出了卓越而持久的光催化效率(78%)和(84%)。此外,Bi2MoO6 在 CA 膜上的有效负载增强了对电子和空穴的吸附,同时促进了载流子的移动。此外,即使经过多次循环,Bi2MoO6/CA 纳米复合光催化剂表现出的稳定性仍然令人印象深刻,这证明了它们的耐久性。这项研究介绍了一种基于半导体的尖端混合纳米复合材料,该材料在光催化降解有机染料方面被证明具有很高的效率,在环境修复策略方面展示了广阔的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable Wastewater Treatment with Bi2MoO6/Cellulose Acetate Photocatalytic Membranes
A major challenge for modern society is securing quality water for various uses. Membrane water treatment will be crucial for drinking water, desalination, and wastewater reuse. The development of bismuth molybdate (Bi2MoO6) nanoparticles has enabled the production of novel Bi2MoO6‐incorporated cellulose acetate (CA) membrane nanocomposite. The synthesized Bi2MoO6/CA nanocomposites are thoroughly examined for their structural, morphological, and photocatalytic characteristics using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) analysis. The photocatalytic properties are determined by evaluating the degradation of Malachite Green (MG) and Rose Bengal (RB) by the nanocomposite membranes under the illumination of a UV light simulator. Notably, the Bi2MoO6/CA nanocomposite membrane displays exceptional and sustained photocatalytic efficiency (78%) and (84%) in MG and RB dye degradation, respectively. Moreover, the effective loading of the Bi2MoO6 onto the CA membrane enhances electron and hole adsorption while facilitating carrier movement. Furthermore, the stability exhibited by the Bi2MoO6/CA nanocomposite photocatalysts remains impressive even after multiple cycles, demonstrating their durability. This research introduces a cutting‐edge semiconductor‐based hybrid nanocomposite material that proves highly efficient in the photocatalytic degradation of organic dyes, showcasing promising advancements in environmental remediation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
期刊最新文献
Physical Crosslinking of Aqueous Polymer Dispersions: A Perspective Titania Doped CDs as Effective CT‐DNA Binders: A Novel Fluorescent Probe via Green Synthesis Fast In Situ Metal Deposition and Removal Under UV and Visible Light Using Polydopamine/TiO2 Composite Surface Cobalt Ferrite–Silica–Gold Nanocomposite: Synthesis, Structural Characterization, and Magneto‐Plasmonic Properties Positron Emission Tomography‐Assisted Photothermal Therapy with Gold Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1