{"title":"太阳地球工程:历史、方法、治理、前景","authors":"Edward A. Parson, David W. Keith","doi":"10.1146/annurev-environ-112321-081911","DOIUrl":null,"url":null,"abstract":"Solar geoengineering, also called sunlight reflection or solar radiation modification (SRM), is a potential climate response that would cool the Earth's surface and reduce many other climate changes by scattering on order 1% of incoming sunlight back to space. SRM can only imperfectly correct for elevated greenhouse gases, but it might complement other climate responses to reduce risks, while also bringing new risks and new challenges to global governance. As climate alarm and calls for effective near-term action mount, SRM is attracting sharply increased attention and controversy, with many calls for expanded research and governance consultations along with ongoing concerns about risks, misuse, or overreliance. We review SRM's history, methods, potential uses and impacts, and governance needs, prioritizing the approach that is most prominent and promising, stratospheric aerosol injection. We identify several policy-relevant characteristics of SRM interventions and identify four narratives that capture current arguments over how SRM might be developed or used in socio-political context to either beneficial or destructive effect, with implications for near-term research, assessment, and governance activity.","PeriodicalId":7982,"journal":{"name":"Annual Review of Environment and Resources","volume":"10 1","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar Geoengineering: History, Methods, Governance, Prospects\",\"authors\":\"Edward A. Parson, David W. Keith\",\"doi\":\"10.1146/annurev-environ-112321-081911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar geoengineering, also called sunlight reflection or solar radiation modification (SRM), is a potential climate response that would cool the Earth's surface and reduce many other climate changes by scattering on order 1% of incoming sunlight back to space. SRM can only imperfectly correct for elevated greenhouse gases, but it might complement other climate responses to reduce risks, while also bringing new risks and new challenges to global governance. As climate alarm and calls for effective near-term action mount, SRM is attracting sharply increased attention and controversy, with many calls for expanded research and governance consultations along with ongoing concerns about risks, misuse, or overreliance. We review SRM's history, methods, potential uses and impacts, and governance needs, prioritizing the approach that is most prominent and promising, stratospheric aerosol injection. We identify several policy-relevant characteristics of SRM interventions and identify four narratives that capture current arguments over how SRM might be developed or used in socio-political context to either beneficial or destructive effect, with implications for near-term research, assessment, and governance activity.\",\"PeriodicalId\":7982,\"journal\":{\"name\":\"Annual Review of Environment and Resources\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Environment and Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-environ-112321-081911\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Environment and Resources","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1146/annurev-environ-112321-081911","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Solar Geoengineering: History, Methods, Governance, Prospects
Solar geoengineering, also called sunlight reflection or solar radiation modification (SRM), is a potential climate response that would cool the Earth's surface and reduce many other climate changes by scattering on order 1% of incoming sunlight back to space. SRM can only imperfectly correct for elevated greenhouse gases, but it might complement other climate responses to reduce risks, while also bringing new risks and new challenges to global governance. As climate alarm and calls for effective near-term action mount, SRM is attracting sharply increased attention and controversy, with many calls for expanded research and governance consultations along with ongoing concerns about risks, misuse, or overreliance. We review SRM's history, methods, potential uses and impacts, and governance needs, prioritizing the approach that is most prominent and promising, stratospheric aerosol injection. We identify several policy-relevant characteristics of SRM interventions and identify four narratives that capture current arguments over how SRM might be developed or used in socio-political context to either beneficial or destructive effect, with implications for near-term research, assessment, and governance activity.
期刊介绍:
The Annual Review of Environment and Resources, established in 1976, offers authoritative reviews on key environmental science and engineering topics. It covers various subjects, including ecology, conservation science, water and energy resources, atmosphere, oceans, climate change, agriculture, living resources, and the human dimensions of resource use and global change. The journal's recent transition from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license, enhances the dissemination of knowledge in the field.