Sha Zhao,Yue Cao,Wei Yang,Jie Yu,Chuan Xu,Wei Dai,Shijian Li,Gang Pan,Benyan Luo
{"title":"DOCTer:基于脑电图的新型意识障碍诊断框架。","authors":"Sha Zhao,Yue Cao,Wei Yang,Jie Yu,Chuan Xu,Wei Dai,Shijian Li,Gang Pan,Benyan Luo","doi":"10.1088/1741-2552/ad7904","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\r\nAccurately diagnosing patients with disorders of consciousness (DOC) is challenging and prone to errors. Recent studies have demonstrated that EEG (electroencephalography), a non-invasive technique of recording the spontaneous electrical activity of brains, offers valuable insights for DOC diagnosis. However, some challenges remain: 1) the EEG signals have not been fully used; and 2) the data scale in most existing studies is limited. In this study, our goal is to differentiate between minimally conscious state (MCS) and unresponsive wakefulness syndrome (UWS) using resting-state EEG signals, by proposing a new deep learning framework.\r\n\r\nAPPROACH\r\nWe propose DOCTer, an end-to-end framework for DOC diagnosis based on EEG. It extracts multiple pertinent features from the raw EEG signals, including time-frequency features and microstates. Meanwhile, it takes clinical characteristics of patients into account, and then combines all the features together for the diagnosis. To evaluate its effectiveness, we collect a large-scale dataset containing 409 resting-state EEG recordings from 128 UWS and 187 MCS cases.\r\n\r\nMAIN RESULTS\r\nEvaluated on our dataset, DOCTer achieves the state-of-the-art performance, compared to other methods. The temporal/spectral features contributes the most to the diagnosis task. The cerebral integrity is important for detecting the consciousness level. Meanwhile, we investigate the influence of different EEG collection duration and number of channels, in order to help make the appropriate choices for clinics.\r\n\r\nSIGNIFICANCE\r\nThe DOCTer framework significantly improves the accuracy of DOC diagnosis, helpful for developing appropriate treatment programs. Findings derived from the large-scale dataset provide valuable insights for clinics.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DOCTer: a novel EEG-based diagnosis framework for disorders of consciousness.\",\"authors\":\"Sha Zhao,Yue Cao,Wei Yang,Jie Yu,Chuan Xu,Wei Dai,Shijian Li,Gang Pan,Benyan Luo\",\"doi\":\"10.1088/1741-2552/ad7904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE\\r\\nAccurately diagnosing patients with disorders of consciousness (DOC) is challenging and prone to errors. Recent studies have demonstrated that EEG (electroencephalography), a non-invasive technique of recording the spontaneous electrical activity of brains, offers valuable insights for DOC diagnosis. However, some challenges remain: 1) the EEG signals have not been fully used; and 2) the data scale in most existing studies is limited. In this study, our goal is to differentiate between minimally conscious state (MCS) and unresponsive wakefulness syndrome (UWS) using resting-state EEG signals, by proposing a new deep learning framework.\\r\\n\\r\\nAPPROACH\\r\\nWe propose DOCTer, an end-to-end framework for DOC diagnosis based on EEG. It extracts multiple pertinent features from the raw EEG signals, including time-frequency features and microstates. Meanwhile, it takes clinical characteristics of patients into account, and then combines all the features together for the diagnosis. To evaluate its effectiveness, we collect a large-scale dataset containing 409 resting-state EEG recordings from 128 UWS and 187 MCS cases.\\r\\n\\r\\nMAIN RESULTS\\r\\nEvaluated on our dataset, DOCTer achieves the state-of-the-art performance, compared to other methods. The temporal/spectral features contributes the most to the diagnosis task. The cerebral integrity is important for detecting the consciousness level. Meanwhile, we investigate the influence of different EEG collection duration and number of channels, in order to help make the appropriate choices for clinics.\\r\\n\\r\\nSIGNIFICANCE\\r\\nThe DOCTer framework significantly improves the accuracy of DOC diagnosis, helpful for developing appropriate treatment programs. Findings derived from the large-scale dataset provide valuable insights for clinics.\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad7904\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad7904","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
DOCTer: a novel EEG-based diagnosis framework for disorders of consciousness.
OBJECTIVE
Accurately diagnosing patients with disorders of consciousness (DOC) is challenging and prone to errors. Recent studies have demonstrated that EEG (electroencephalography), a non-invasive technique of recording the spontaneous electrical activity of brains, offers valuable insights for DOC diagnosis. However, some challenges remain: 1) the EEG signals have not been fully used; and 2) the data scale in most existing studies is limited. In this study, our goal is to differentiate between minimally conscious state (MCS) and unresponsive wakefulness syndrome (UWS) using resting-state EEG signals, by proposing a new deep learning framework.
APPROACH
We propose DOCTer, an end-to-end framework for DOC diagnosis based on EEG. It extracts multiple pertinent features from the raw EEG signals, including time-frequency features and microstates. Meanwhile, it takes clinical characteristics of patients into account, and then combines all the features together for the diagnosis. To evaluate its effectiveness, we collect a large-scale dataset containing 409 resting-state EEG recordings from 128 UWS and 187 MCS cases.
MAIN RESULTS
Evaluated on our dataset, DOCTer achieves the state-of-the-art performance, compared to other methods. The temporal/spectral features contributes the most to the diagnosis task. The cerebral integrity is important for detecting the consciousness level. Meanwhile, we investigate the influence of different EEG collection duration and number of channels, in order to help make the appropriate choices for clinics.
SIGNIFICANCE
The DOCTer framework significantly improves the accuracy of DOC diagnosis, helpful for developing appropriate treatment programs. Findings derived from the large-scale dataset provide valuable insights for clinics.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.