{"title":"黍铵转运体基因:对结构、功能、进化保护、分化和系统发育分析的见解","authors":"Tanushree Sarkar, Suman Bakshi","doi":"10.1007/s10722-024-02092-2","DOIUrl":null,"url":null,"abstract":"<p>Millets, resilient and nutritionally rich crops, are increasingly recognized for their potential in sustainable agriculture. Ammonium transporter (AMTs) gene family significantly contribute to the absorption and transport of NH<sub>4</sub><sup>+</sup> form of nitrogen in plants. The information about the structure and function of ammonium transporter genes in millet species is lacking. The millet crops such as pearl millet, proso millet, finger millet, sorghum, foxtail millet and green foxtail millet exhibit genetic variation in AMTs, which can be harnessed to improve NUE. Thus, genomic sequences of the six millet species were used and a total of 53 <i>AMT</i> genes were identified. Further, comprehensive analysis of chromosomal distribution, transmembrane structure prediction, presence of exons and introns, domain and motif organization, phylogeny, and synteny analysis were carried out. The phylogenetic analysis illustrated that millet AMTs belong to two subfamilies AMT1 and AMT2 (AMT2/AMT3/AMT4). Ka/Ks analysis showed that segmental duplications have contributed considerably in the evolution of millet AMTs. Phylogenetic classification of members of <i>Poaceae</i> using the amino acid sequences of <i>AMT1.1</i> genes confirms the speciation patterns shown by <i>matK</i> gene sequence. Promoter analysis of millet AMTs showed presence of cis-elements related to light response, anaerobic induction, growth hormones, drought stress, biotic stress and several endogenous signals related to plant growth and development. This research provides insights into the structural and functional aspects of ammonium transporter genes in millets, and will serve as a foundation for utilizing AMTs for devising NUE strategies.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":12467,"journal":{"name":"Genetic Resources and Crop Evolution","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonium transporter genes in millets: insights into structure, function, evolutionary conservation, divergence, and phylogenetic analysis\",\"authors\":\"Tanushree Sarkar, Suman Bakshi\",\"doi\":\"10.1007/s10722-024-02092-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Millets, resilient and nutritionally rich crops, are increasingly recognized for their potential in sustainable agriculture. Ammonium transporter (AMTs) gene family significantly contribute to the absorption and transport of NH<sub>4</sub><sup>+</sup> form of nitrogen in plants. The information about the structure and function of ammonium transporter genes in millet species is lacking. The millet crops such as pearl millet, proso millet, finger millet, sorghum, foxtail millet and green foxtail millet exhibit genetic variation in AMTs, which can be harnessed to improve NUE. Thus, genomic sequences of the six millet species were used and a total of 53 <i>AMT</i> genes were identified. Further, comprehensive analysis of chromosomal distribution, transmembrane structure prediction, presence of exons and introns, domain and motif organization, phylogeny, and synteny analysis were carried out. The phylogenetic analysis illustrated that millet AMTs belong to two subfamilies AMT1 and AMT2 (AMT2/AMT3/AMT4). Ka/Ks analysis showed that segmental duplications have contributed considerably in the evolution of millet AMTs. Phylogenetic classification of members of <i>Poaceae</i> using the amino acid sequences of <i>AMT1.1</i> genes confirms the speciation patterns shown by <i>matK</i> gene sequence. Promoter analysis of millet AMTs showed presence of cis-elements related to light response, anaerobic induction, growth hormones, drought stress, biotic stress and several endogenous signals related to plant growth and development. This research provides insights into the structural and functional aspects of ammonium transporter genes in millets, and will serve as a foundation for utilizing AMTs for devising NUE strategies.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":12467,\"journal\":{\"name\":\"Genetic Resources and Crop Evolution\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Resources and Crop Evolution\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10722-024-02092-2\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Resources and Crop Evolution","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10722-024-02092-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Ammonium transporter genes in millets: insights into structure, function, evolutionary conservation, divergence, and phylogenetic analysis
Millets, resilient and nutritionally rich crops, are increasingly recognized for their potential in sustainable agriculture. Ammonium transporter (AMTs) gene family significantly contribute to the absorption and transport of NH4+ form of nitrogen in plants. The information about the structure and function of ammonium transporter genes in millet species is lacking. The millet crops such as pearl millet, proso millet, finger millet, sorghum, foxtail millet and green foxtail millet exhibit genetic variation in AMTs, which can be harnessed to improve NUE. Thus, genomic sequences of the six millet species were used and a total of 53 AMT genes were identified. Further, comprehensive analysis of chromosomal distribution, transmembrane structure prediction, presence of exons and introns, domain and motif organization, phylogeny, and synteny analysis were carried out. The phylogenetic analysis illustrated that millet AMTs belong to two subfamilies AMT1 and AMT2 (AMT2/AMT3/AMT4). Ka/Ks analysis showed that segmental duplications have contributed considerably in the evolution of millet AMTs. Phylogenetic classification of members of Poaceae using the amino acid sequences of AMT1.1 genes confirms the speciation patterns shown by matK gene sequence. Promoter analysis of millet AMTs showed presence of cis-elements related to light response, anaerobic induction, growth hormones, drought stress, biotic stress and several endogenous signals related to plant growth and development. This research provides insights into the structural and functional aspects of ammonium transporter genes in millets, and will serve as a foundation for utilizing AMTs for devising NUE strategies.
期刊介绍:
Genetic Resources and Crop Evolution is devoted to all aspects of plant genetic resources research. It publishes original articles in the fields of taxonomical, morphological, physiological, biochemical, genetical, cytological or ethnobotanical research of genetic resources and includes contributions to gene-bank management in a broad sense, that means to collecting, maintenance, evaluation, storage and documentation.
Areas of particular interest include:
-crop evolution
-domestication
-crop-weed relationships
-related wild species
-history of cultivated plants including palaeoethnobotany.
Genetic Resources and Crop Evolution also publishes short communications, e.g. newly described crop taxa, nomenclatural notes, reports of collecting missions, evaluation results of gene-bank material etc. as well as book reviews of important publications in the field of genetic resources.
Every volume will contain some review articles on actual problems. The journal is the internationalized continuation of the German periodical Die Kulturpflanze, published formerly by the Institute of Plant Genetics and Crop Plant Research at Gatersleben, Germany.
All contributions are in the English language and are subject to peer reviewing.