从有限数据中进行机器学习:预测时变外部输入下的生物动态

Hoony Kang, Keshav Srinivasan, Wolfgang Losert
{"title":"从有限数据中进行机器学习:预测时变外部输入下的生物动态","authors":"Hoony Kang, Keshav Srinivasan, Wolfgang Losert","doi":"arxiv-2408.07998","DOIUrl":null,"url":null,"abstract":"Reservoir computing (RC) is known as a powerful machine learning approach for\nlearning complex dynamics from limited data. Here, we use RC to predict highly\nstochastic dynamics of cell shapes. We find that RC is able to predict the\nsteady state climate from very limited data. Furthermore, the RC learns the\ntimescale of transients from only four observations. We find that these\ncapabilities of the RC to act as a dynamic twin allows us to also infer\nimportant statistics of cell shape dynamics of unobserved conditions.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning from limited data: Predicting biological dynamics under a time-varying external input\",\"authors\":\"Hoony Kang, Keshav Srinivasan, Wolfgang Losert\",\"doi\":\"arxiv-2408.07998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservoir computing (RC) is known as a powerful machine learning approach for\\nlearning complex dynamics from limited data. Here, we use RC to predict highly\\nstochastic dynamics of cell shapes. We find that RC is able to predict the\\nsteady state climate from very limited data. Furthermore, the RC learns the\\ntimescale of transients from only four observations. We find that these\\ncapabilities of the RC to act as a dynamic twin allows us to also infer\\nimportant statistics of cell shape dynamics of unobserved conditions.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,存储计算(RC)是一种强大的机器学习方法,可以从有限的数据中学习复杂的动力学。在这里,我们使用 RC 预测细胞形状的高随机动态。我们发现,RC 能够从非常有限的数据中预测稳态气候。此外,RC 还能从仅有的四个观测数据中学习瞬态的时间尺度。我们发现,RC 作为动态孪生体的这些能力使我们还能推断出未观测条件下细胞形状动态的重要统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning from limited data: Predicting biological dynamics under a time-varying external input
Reservoir computing (RC) is known as a powerful machine learning approach for learning complex dynamics from limited data. Here, we use RC to predict highly stochastic dynamics of cell shapes. We find that RC is able to predict the steady state climate from very limited data. Furthermore, the RC learns the timescale of transients from only four observations. We find that these capabilities of the RC to act as a dynamic twin allows us to also infer important statistics of cell shape dynamics of unobserved conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1