动力系统递推分析的趋势

Norbert Marwan, K. Hauke Kraemer
{"title":"动力系统递推分析的趋势","authors":"Norbert Marwan, K. Hauke Kraemer","doi":"arxiv-2409.04110","DOIUrl":null,"url":null,"abstract":"The last decade has witnessed a number of important and exciting developments\nthat had been achieved for improving recurrence plot based data analysis and to\nwiden its application potential. We will give a brief overview about important\nand innovative developments, such as computational improvements, alternative\nrecurrence definitions (event-like, multiscale, heterogeneous, and\nspatio-temporal recurrences) and ideas for parameter selection, theoretical\nconsiderations of recurrence quantification measures, new recurrence\nquantifiers (e.g., for transition detection and causality detection), and\ncorrection schemes. New perspectives have recently been opened by combining\nrecurrence plots with machine learning. We finally show open questions and\nperspectives for futures directions of methodical research.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in recurrence analysis of dynamical systems\",\"authors\":\"Norbert Marwan, K. Hauke Kraemer\",\"doi\":\"arxiv-2409.04110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last decade has witnessed a number of important and exciting developments\\nthat had been achieved for improving recurrence plot based data analysis and to\\nwiden its application potential. We will give a brief overview about important\\nand innovative developments, such as computational improvements, alternative\\nrecurrence definitions (event-like, multiscale, heterogeneous, and\\nspatio-temporal recurrences) and ideas for parameter selection, theoretical\\nconsiderations of recurrence quantification measures, new recurrence\\nquantifiers (e.g., for transition detection and causality detection), and\\ncorrection schemes. New perspectives have recently been opened by combining\\nrecurrence plots with machine learning. We finally show open questions and\\nperspectives for futures directions of methodical research.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,基于递推图的数据分析取得了一系列重要而令人振奋的发展,并进一步挖掘了其应用潜力。我们将简要介绍一些重要的创新发展,如计算方法的改进、替代性递归定义(类事件、多尺度、异质和时空递归)和参数选择的思路、递归量化措施的理论考虑、新的递归量化指标(如用于过渡检测和因果关系检测)以及校正方案。最近,通过将递归图与机器学习相结合,我们看到了新的前景。最后,我们提出了一些开放性问题,并展望了未来的方法论研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in recurrence analysis of dynamical systems
The last decade has witnessed a number of important and exciting developments that had been achieved for improving recurrence plot based data analysis and to widen its application potential. We will give a brief overview about important and innovative developments, such as computational improvements, alternative recurrence definitions (event-like, multiscale, heterogeneous, and spatio-temporal recurrences) and ideas for parameter selection, theoretical considerations of recurrence quantification measures, new recurrence quantifiers (e.g., for transition detection and causality detection), and correction schemes. New perspectives have recently been opened by combining recurrence plots with machine learning. We finally show open questions and perspectives for futures directions of methodical research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1