通过湿法冶金回收二次铝渣以制造氧化铝:综述

Jun Liu, Shengen Zhang, Hanlin Shen, Binjie Lou, Bolin Zhang
{"title":"通过湿法冶金回收二次铝渣以制造氧化铝:综述","authors":"Jun Liu, Shengen Zhang, Hanlin Shen, Binjie Lou, Bolin Zhang","doi":"10.1016/j.jmrt.2024.08.151","DOIUrl":null,"url":null,"abstract":"Secondary aluminum (Al) dross (SAD) is a hazardous waste discharged from Al production, processing and recycling. Over 6.7 million tons of SAD was discharged on the planet in 2023. SAD is consisted of 40–60 wt% of alumina (AlO), 10–30 wt% of AlN, 5–15 wt% of salts and 3–10 wt% of heavy metal oxides. Currently, recycling of SAD to make AlO by hydrometallurgy is a promising method for disposal of SAD. Hydrometallurgy method is mainly divided into acid leaching and alkali leaching. In acid leaching, Al, AlN and AlO react with acid to form aluminum sulfate and aluminum chloride. In alkali leaching, Al, AlN and AlO react with alkali to form sodium aluminate. High-purity AlO is obtained after precipitation, washing, drying and calcination from the leachate. Resource consumption and emission was calculated to evaluate the economic and environmental benefits. About 147.9 and 172.6 dollars was earned after making AlO from a ton of SAD by alkali and acid leaching process, respectively. And carbon emissions of a ton of AlO was risen about 596.5 and 2216.0 kg CO, respectively, compared with the Bayer process with bauxite. We proposed a calcination pre-treatment with quicklime on SAD to reduce the carbon emission. The Al and AlN are oxidized into AlO after calcination, and the AlO reacts with CaO to form CaO·AlO. The Al in CaO·AlO can be leached out easily with a low concentration of alkali. This review provides a guidance for the recycling of SAD by hydrometallurgy, and proposes a novel idea for the energy and consumption reduction in alumina (Al₂O₃) production.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycling of secondary aluminum dross to make alumina by hydrometallurgy: A review\",\"authors\":\"Jun Liu, Shengen Zhang, Hanlin Shen, Binjie Lou, Bolin Zhang\",\"doi\":\"10.1016/j.jmrt.2024.08.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secondary aluminum (Al) dross (SAD) is a hazardous waste discharged from Al production, processing and recycling. Over 6.7 million tons of SAD was discharged on the planet in 2023. SAD is consisted of 40–60 wt% of alumina (AlO), 10–30 wt% of AlN, 5–15 wt% of salts and 3–10 wt% of heavy metal oxides. Currently, recycling of SAD to make AlO by hydrometallurgy is a promising method for disposal of SAD. Hydrometallurgy method is mainly divided into acid leaching and alkali leaching. In acid leaching, Al, AlN and AlO react with acid to form aluminum sulfate and aluminum chloride. In alkali leaching, Al, AlN and AlO react with alkali to form sodium aluminate. High-purity AlO is obtained after precipitation, washing, drying and calcination from the leachate. Resource consumption and emission was calculated to evaluate the economic and environmental benefits. About 147.9 and 172.6 dollars was earned after making AlO from a ton of SAD by alkali and acid leaching process, respectively. And carbon emissions of a ton of AlO was risen about 596.5 and 2216.0 kg CO, respectively, compared with the Bayer process with bauxite. We proposed a calcination pre-treatment with quicklime on SAD to reduce the carbon emission. The Al and AlN are oxidized into AlO after calcination, and the AlO reacts with CaO to form CaO·AlO. The Al in CaO·AlO can be leached out easily with a low concentration of alkali. This review provides a guidance for the recycling of SAD by hydrometallurgy, and proposes a novel idea for the energy and consumption reduction in alumina (Al₂O₃) production.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.08.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.08.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二次铝渣(SAD)是铝生产、加工和回收过程中产生的危险废物。2023 年,全球将排放超过 670 万吨的 SAD。SAD 由 40-60% 的氧化铝 (AlO)、10-30% 的 AlN、5-15% 的盐类和 3-10% 的重金属氧化物组成。目前,通过湿法冶金回收利用 SAD 来制造 AlO 是一种很有前景的 SAD 处理方法。水冶法主要分为酸浸法和碱浸法。在酸浸法中,Al、AlN 和 AlO 与酸反应生成硫酸铝和氯化铝。在碱浸出法中,Al、AlN 和 AlO 与碱反应生成铝酸钠。从沥滤液中经过沉淀、洗涤、干燥和煅烧后可获得高纯度的 AlO。计算了资源消耗和排放,以评估经济和环境效益。用碱浸出法和酸浸出法从一吨 SAD 制得 AlO 后,分别获得了约 147.9 美元和 172.6 美元的收益。与使用铝土矿的拜耳法相比,每吨氧化铝的碳排放量分别增加了约 596.5 千克 CO 和 2216.0 千克 CO。我们建议在 SAD 上使用生石灰进行煅烧预处理,以减少碳排放。煅烧后,Al 和 AlN 被氧化成 AlO,AlO 与 CaO 反应生成 CaO-AlO。CaO-AlO 中的 Al 很容易用低浓度的碱浸出。本综述为通过湿法冶金回收 SAD 提供了指导,并为氧化铝(Al₂O₃)生产的节能降耗提出了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recycling of secondary aluminum dross to make alumina by hydrometallurgy: A review
Secondary aluminum (Al) dross (SAD) is a hazardous waste discharged from Al production, processing and recycling. Over 6.7 million tons of SAD was discharged on the planet in 2023. SAD is consisted of 40–60 wt% of alumina (AlO), 10–30 wt% of AlN, 5–15 wt% of salts and 3–10 wt% of heavy metal oxides. Currently, recycling of SAD to make AlO by hydrometallurgy is a promising method for disposal of SAD. Hydrometallurgy method is mainly divided into acid leaching and alkali leaching. In acid leaching, Al, AlN and AlO react with acid to form aluminum sulfate and aluminum chloride. In alkali leaching, Al, AlN and AlO react with alkali to form sodium aluminate. High-purity AlO is obtained after precipitation, washing, drying and calcination from the leachate. Resource consumption and emission was calculated to evaluate the economic and environmental benefits. About 147.9 and 172.6 dollars was earned after making AlO from a ton of SAD by alkali and acid leaching process, respectively. And carbon emissions of a ton of AlO was risen about 596.5 and 2216.0 kg CO, respectively, compared with the Bayer process with bauxite. We proposed a calcination pre-treatment with quicklime on SAD to reduce the carbon emission. The Al and AlN are oxidized into AlO after calcination, and the AlO reacts with CaO to form CaO·AlO. The Al in CaO·AlO can be leached out easily with a low concentration of alkali. This review provides a guidance for the recycling of SAD by hydrometallurgy, and proposes a novel idea for the energy and consumption reduction in alumina (Al₂O₃) production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing the microstructural evolution and mechanical response of repaired Fe–Cr–Si based alloy by directed energy deposition Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer Microstructure and mechanical property of high-density 7075 Al alloy by compression molding of POM-based feedstock Effect of microstructural inheritance window on the mechanical properties of an intercritically annealed Q&P steel Clarifying the effect of irradiation and thermal treatment on the austenitic microstructure and austenitic hardening in austenitic stainless steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1