{"title":"基于二硫化钼的乙氧基化纳米流体用于提高石油采收率","authors":"Infant Raj, Zhuo Lu, Ji-Rui Hou, Yu-Chen Wen, Li-Xiao Xiao","doi":"10.1016/j.petsci.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery (EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil–water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10<sup>−3</sup> mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials, offering a promising avenue for enhancing oil recovery efficiency.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethoxylated molybdenum disulphide based nanofluid for enhanced oil recovery\",\"authors\":\"Infant Raj, Zhuo Lu, Ji-Rui Hou, Yu-Chen Wen, Li-Xiao Xiao\",\"doi\":\"10.1016/j.petsci.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery (EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil–water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10<sup>−3</sup> mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials, offering a promising avenue for enhancing oil recovery efficiency.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624002309\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624002309","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ethoxylated molybdenum disulphide based nanofluid for enhanced oil recovery
Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery (EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil–water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10−3 mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials, offering a promising avenue for enhancing oil recovery efficiency.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.