Aravind Ambika Gangadharan, Rajesh Resselian, Dev Anand Manoharan
{"title":"从凤凰叶鞘生物废料中提取生物纤维并确定其特性,以便在聚合物复合材料中进行加固","authors":"Aravind Ambika Gangadharan, Rajesh Resselian, Dev Anand Manoharan","doi":"10.1007/s13399-024-06092-1","DOIUrl":null,"url":null,"abstract":"<p>In order to solve sustainability issues with its processes and products, the composites sector is concentrating on bio-waste as a different origin of materials for manufacture. The properties of <i>Phoenix sylvestris</i> leaf sheath fiber (PSLSF), a unique agro-waste that is separated from the tree’s leaf sheath, was discussed in this paper. The <i>Phoenix sylvestris</i> leaf sheaths were collected from the <i>Phoenix sylvestris</i> tree locations and soaked in water to loosen the fiber. After 3 days of soaking the <i>Phoenix sylvestris</i> leaf sheaths were washed in running water to segregate the PSLSFs. The comprehensive analysis yielded quantitative information on PSLSF, including its tensile strength (192–239 MPa), Young’s modulus (1.6–4.3 GPa), improved crystallinity index (53.6%), and cellulose proportion (64.43 wt%). Differential scanning calorimetry (DSC) and thermogravimetric (TGA/DTG) investigations shed light on the thermal stability of PSLSF and showed it durability up to 242 °C. Fourier transform infrared spectroscopy (FTIR) evaluation is used to verify the results of chemical assessment. An examination on the exterior texture of PSLSF employing scanning electron microscope (SEM) provided evidence to support the concept of utilizing it as a reinforcing component in composite with substrate as polymers. Research findings indicate that structural applications can benefit from the usage of PSLSF augmented polymeric composite.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"10 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction and characterization of biofiber from the Phoenix sylvestris leaf sheath biowaste for probable reinforcement in polymer composites\",\"authors\":\"Aravind Ambika Gangadharan, Rajesh Resselian, Dev Anand Manoharan\",\"doi\":\"10.1007/s13399-024-06092-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to solve sustainability issues with its processes and products, the composites sector is concentrating on bio-waste as a different origin of materials for manufacture. The properties of <i>Phoenix sylvestris</i> leaf sheath fiber (PSLSF), a unique agro-waste that is separated from the tree’s leaf sheath, was discussed in this paper. The <i>Phoenix sylvestris</i> leaf sheaths were collected from the <i>Phoenix sylvestris</i> tree locations and soaked in water to loosen the fiber. After 3 days of soaking the <i>Phoenix sylvestris</i> leaf sheaths were washed in running water to segregate the PSLSFs. The comprehensive analysis yielded quantitative information on PSLSF, including its tensile strength (192–239 MPa), Young’s modulus (1.6–4.3 GPa), improved crystallinity index (53.6%), and cellulose proportion (64.43 wt%). Differential scanning calorimetry (DSC) and thermogravimetric (TGA/DTG) investigations shed light on the thermal stability of PSLSF and showed it durability up to 242 °C. Fourier transform infrared spectroscopy (FTIR) evaluation is used to verify the results of chemical assessment. An examination on the exterior texture of PSLSF employing scanning electron microscope (SEM) provided evidence to support the concept of utilizing it as a reinforcing component in composite with substrate as polymers. Research findings indicate that structural applications can benefit from the usage of PSLSF augmented polymeric composite.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06092-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06092-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Extraction and characterization of biofiber from the Phoenix sylvestris leaf sheath biowaste for probable reinforcement in polymer composites
In order to solve sustainability issues with its processes and products, the composites sector is concentrating on bio-waste as a different origin of materials for manufacture. The properties of Phoenix sylvestris leaf sheath fiber (PSLSF), a unique agro-waste that is separated from the tree’s leaf sheath, was discussed in this paper. The Phoenix sylvestris leaf sheaths were collected from the Phoenix sylvestris tree locations and soaked in water to loosen the fiber. After 3 days of soaking the Phoenix sylvestris leaf sheaths were washed in running water to segregate the PSLSFs. The comprehensive analysis yielded quantitative information on PSLSF, including its tensile strength (192–239 MPa), Young’s modulus (1.6–4.3 GPa), improved crystallinity index (53.6%), and cellulose proportion (64.43 wt%). Differential scanning calorimetry (DSC) and thermogravimetric (TGA/DTG) investigations shed light on the thermal stability of PSLSF and showed it durability up to 242 °C. Fourier transform infrared spectroscopy (FTIR) evaluation is used to verify the results of chemical assessment. An examination on the exterior texture of PSLSF employing scanning electron microscope (SEM) provided evidence to support the concept of utilizing it as a reinforcing component in composite with substrate as polymers. Research findings indicate that structural applications can benefit from the usage of PSLSF augmented polymeric composite.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.