Eshat Ar Rafi, Muhit Bin Aziz, Md. Tanvir Rahman Khan, Mohammad Rejaul Haque, Mahbub Hasan, M. A. Gafur, Md. Fazlay Alam, Fazlar Rahman, Md. Shahnewaz Bhuiyan
{"title":"大叶女贞茎纤维加固对乙烯基酯材料的机械、化学、热和物理特性的影响","authors":"Eshat Ar Rafi, Muhit Bin Aziz, Md. Tanvir Rahman Khan, Mohammad Rejaul Haque, Mahbub Hasan, M. A. Gafur, Md. Fazlay Alam, Fazlar Rahman, Md. Shahnewaz Bhuiyan","doi":"10.1007/s13399-024-06105-z","DOIUrl":null,"url":null,"abstract":"<p>As natural fibers in composites improve performance and reduce non-renewable resource use, the present study develops a vinyl ester composite reinforced with <i>Sesbania grandiflora</i> stem fibers which is available in nature. For the first time, the stem fiber of <i>Sesbania grandiflora</i> was reinforced with vinyl ester matrix via compression molding to yield a novel composite material with the detailed characterization of mechanical, physical, thermal, chemical, and fiber-matrix bonding properties. Composites are fabricated using fiber loadings ranging from 0 to 35 wt.%. The composites with 35 wt.% fiber loading had 204.2%, 101.35%, and 287.22% higher tensile, flexural, and impact strengths than those without fiber loading. The composite with 15 wt.% fibers increased hardness the most by 4.56% compared to the bare matrix material. The chemical distribution and thermal stability were analyzed using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). TGA was employed to assess the thermal stability of the composite. The material’s eco-friendliness was demonstrated by biodegradability testing. The examination of the fracture surfaces under tension provides insights into the bonding properties between the fiber and matrix at the interface. The studies illustrate the capacity of sustainable composites in the fields of aerospace, automobile, and building.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Sesbania grandiflora stem fiber reinforcement on mechanical, chemical, thermal, and physical properties of vinyl ester material\",\"authors\":\"Eshat Ar Rafi, Muhit Bin Aziz, Md. Tanvir Rahman Khan, Mohammad Rejaul Haque, Mahbub Hasan, M. A. Gafur, Md. Fazlay Alam, Fazlar Rahman, Md. Shahnewaz Bhuiyan\",\"doi\":\"10.1007/s13399-024-06105-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As natural fibers in composites improve performance and reduce non-renewable resource use, the present study develops a vinyl ester composite reinforced with <i>Sesbania grandiflora</i> stem fibers which is available in nature. For the first time, the stem fiber of <i>Sesbania grandiflora</i> was reinforced with vinyl ester matrix via compression molding to yield a novel composite material with the detailed characterization of mechanical, physical, thermal, chemical, and fiber-matrix bonding properties. Composites are fabricated using fiber loadings ranging from 0 to 35 wt.%. The composites with 35 wt.% fiber loading had 204.2%, 101.35%, and 287.22% higher tensile, flexural, and impact strengths than those without fiber loading. The composite with 15 wt.% fibers increased hardness the most by 4.56% compared to the bare matrix material. The chemical distribution and thermal stability were analyzed using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). TGA was employed to assess the thermal stability of the composite. The material’s eco-friendliness was demonstrated by biodegradability testing. The examination of the fracture surfaces under tension provides insights into the bonding properties between the fiber and matrix at the interface. The studies illustrate the capacity of sustainable composites in the fields of aerospace, automobile, and building.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06105-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06105-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of Sesbania grandiflora stem fiber reinforcement on mechanical, chemical, thermal, and physical properties of vinyl ester material
As natural fibers in composites improve performance and reduce non-renewable resource use, the present study develops a vinyl ester composite reinforced with Sesbania grandiflora stem fibers which is available in nature. For the first time, the stem fiber of Sesbania grandiflora was reinforced with vinyl ester matrix via compression molding to yield a novel composite material with the detailed characterization of mechanical, physical, thermal, chemical, and fiber-matrix bonding properties. Composites are fabricated using fiber loadings ranging from 0 to 35 wt.%. The composites with 35 wt.% fiber loading had 204.2%, 101.35%, and 287.22% higher tensile, flexural, and impact strengths than those without fiber loading. The composite with 15 wt.% fibers increased hardness the most by 4.56% compared to the bare matrix material. The chemical distribution and thermal stability were analyzed using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). TGA was employed to assess the thermal stability of the composite. The material’s eco-friendliness was demonstrated by biodegradability testing. The examination of the fracture surfaces under tension provides insights into the bonding properties between the fiber and matrix at the interface. The studies illustrate the capacity of sustainable composites in the fields of aerospace, automobile, and building.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.