{"title":"撞击热表面的燃料液滴随机点火和燃烧的实验与建模","authors":"Nguyen Ly, Yichi Ma, Guillaume Vignat, Nozomu Hashimoto, Matthias Ihme","doi":"10.1016/j.proci.2024.105747","DOIUrl":null,"url":null,"abstract":"The ignition dynamic of liquid fuel droplets impacting hot surfaces is critical for fire-safety analysis in engineering systems, as well as for controlling wall-filming effects in IC engines. The scenario of slow fuel-leakage rates poses challenges associated with the stochastic processes of droplet splashing, break-up, turbulent mixing, and combustion. To address this, we conduct controlled experiments of liquid n-heptane droplets impacting a heated surface in the Leidenfrost regime, targeting the individual-droplet-deposition conditions. The experiment encompasses a range of surface temperatures and droplet-deposition rates. The experiments are complemented by theoretical analysis, where we developed a stochastic low-order numerical model, demonstrating good accuracy for predicting ignition probability and overall combustion dynamics. Notably, we observe a broad region of intermittent combustion behavior, with ignition probability varying based on surface temperature and droplet deposition rate. Additionally, we find that the transition to consistent ignition relies heavily on both surface temperature and deposition rate. Experimental and numerical model results shed light on the roles of the complex interplay between droplet breakup, chemical kinetics, and evaporation and mixing time scales, as well as the interaction among subsequent droplet combustion events, in governing the ignition and combustion of impacting droplet trains. The revealed dynamic of droplet/hot-surface ignition and the proposed stochastic model hold promise for advancing predictive capabilities of hot-surface-induced ignition and combustion arising from accidental leaks in flammable-liquid piping and wall-filming, particularly in the stochasticity-dominated individual-droplet-deposition regime.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"10 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment and modeling of stochastic ignition and combustion of fuel droplets impacting a hot surface\",\"authors\":\"Nguyen Ly, Yichi Ma, Guillaume Vignat, Nozomu Hashimoto, Matthias Ihme\",\"doi\":\"10.1016/j.proci.2024.105747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ignition dynamic of liquid fuel droplets impacting hot surfaces is critical for fire-safety analysis in engineering systems, as well as for controlling wall-filming effects in IC engines. The scenario of slow fuel-leakage rates poses challenges associated with the stochastic processes of droplet splashing, break-up, turbulent mixing, and combustion. To address this, we conduct controlled experiments of liquid n-heptane droplets impacting a heated surface in the Leidenfrost regime, targeting the individual-droplet-deposition conditions. The experiment encompasses a range of surface temperatures and droplet-deposition rates. The experiments are complemented by theoretical analysis, where we developed a stochastic low-order numerical model, demonstrating good accuracy for predicting ignition probability and overall combustion dynamics. Notably, we observe a broad region of intermittent combustion behavior, with ignition probability varying based on surface temperature and droplet deposition rate. Additionally, we find that the transition to consistent ignition relies heavily on both surface temperature and deposition rate. Experimental and numerical model results shed light on the roles of the complex interplay between droplet breakup, chemical kinetics, and evaporation and mixing time scales, as well as the interaction among subsequent droplet combustion events, in governing the ignition and combustion of impacting droplet trains. The revealed dynamic of droplet/hot-surface ignition and the proposed stochastic model hold promise for advancing predictive capabilities of hot-surface-induced ignition and combustion arising from accidental leaks in flammable-liquid piping and wall-filming, particularly in the stochasticity-dominated individual-droplet-deposition regime.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105747\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105747","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experiment and modeling of stochastic ignition and combustion of fuel droplets impacting a hot surface
The ignition dynamic of liquid fuel droplets impacting hot surfaces is critical for fire-safety analysis in engineering systems, as well as for controlling wall-filming effects in IC engines. The scenario of slow fuel-leakage rates poses challenges associated with the stochastic processes of droplet splashing, break-up, turbulent mixing, and combustion. To address this, we conduct controlled experiments of liquid n-heptane droplets impacting a heated surface in the Leidenfrost regime, targeting the individual-droplet-deposition conditions. The experiment encompasses a range of surface temperatures and droplet-deposition rates. The experiments are complemented by theoretical analysis, where we developed a stochastic low-order numerical model, demonstrating good accuracy for predicting ignition probability and overall combustion dynamics. Notably, we observe a broad region of intermittent combustion behavior, with ignition probability varying based on surface temperature and droplet deposition rate. Additionally, we find that the transition to consistent ignition relies heavily on both surface temperature and deposition rate. Experimental and numerical model results shed light on the roles of the complex interplay between droplet breakup, chemical kinetics, and evaporation and mixing time scales, as well as the interaction among subsequent droplet combustion events, in governing the ignition and combustion of impacting droplet trains. The revealed dynamic of droplet/hot-surface ignition and the proposed stochastic model hold promise for advancing predictive capabilities of hot-surface-induced ignition and combustion arising from accidental leaks in flammable-liquid piping and wall-filming, particularly in the stochasticity-dominated individual-droplet-deposition regime.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.