Guoqing Wang, Abel Faure-Beaulieu, Bruno Schuermans, Nicolas Noiray
{"title":"氢扩散漩涡火焰的火焰传递函数分析","authors":"Guoqing Wang, Abel Faure-Beaulieu, Bruno Schuermans, Nicolas Noiray","doi":"10.1016/j.proci.2024.105727","DOIUrl":null,"url":null,"abstract":"This paper investigates the first Flame Transfer Functions (FTFs) of hydrogen diffusion swirl flames, which are crucial for predicting and mitigating thermoacoustic instabilities. Given the need to develop new combustion technologies for hydrogen, it is therefore essential to accurately measure and analyze these FTFs. Employing acoustic and optical methods, we obtained the FTFs over a wide frequency range from 50 to 1000 Hz. Using the acoustic method, the FTFs are deduced from the flame transfer matrices. The FTFs exhibit a low-pass filter behavior with gains decreasing significantly above 150 Hz. Strouhal number normalization effectively collapses the FTFs across various thermal powers, bulk mass flow rates and global equivalence ratios. This result suggests that a generic flame response to acoustic perturbations exists and that the FTF can be interpolated over a range of operating conditions. This study identifies two dominant combustion modes in these hydrogen diffusion swirl flames: a diffusion-mode thin reaction layer near the nozzle and a partially premixed thicker reaction layer downstream. Phase-averaged OH* and OH-PLIF imaging revealed non-uniform transversal oscillations of the reaction zone, offering key insights into the complex swirling flow and the convective wavelength of the coherent heat release rate oscillations along these turbulent hydrogen diffusion swirl flames.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"64 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame transfer function analysis of hydrogen diffusion swirl flames\",\"authors\":\"Guoqing Wang, Abel Faure-Beaulieu, Bruno Schuermans, Nicolas Noiray\",\"doi\":\"10.1016/j.proci.2024.105727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the first Flame Transfer Functions (FTFs) of hydrogen diffusion swirl flames, which are crucial for predicting and mitigating thermoacoustic instabilities. Given the need to develop new combustion technologies for hydrogen, it is therefore essential to accurately measure and analyze these FTFs. Employing acoustic and optical methods, we obtained the FTFs over a wide frequency range from 50 to 1000 Hz. Using the acoustic method, the FTFs are deduced from the flame transfer matrices. The FTFs exhibit a low-pass filter behavior with gains decreasing significantly above 150 Hz. Strouhal number normalization effectively collapses the FTFs across various thermal powers, bulk mass flow rates and global equivalence ratios. This result suggests that a generic flame response to acoustic perturbations exists and that the FTF can be interpolated over a range of operating conditions. This study identifies two dominant combustion modes in these hydrogen diffusion swirl flames: a diffusion-mode thin reaction layer near the nozzle and a partially premixed thicker reaction layer downstream. Phase-averaged OH* and OH-PLIF imaging revealed non-uniform transversal oscillations of the reaction zone, offering key insights into the complex swirling flow and the convective wavelength of the coherent heat release rate oscillations along these turbulent hydrogen diffusion swirl flames.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105727\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105727","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Flame transfer function analysis of hydrogen diffusion swirl flames
This paper investigates the first Flame Transfer Functions (FTFs) of hydrogen diffusion swirl flames, which are crucial for predicting and mitigating thermoacoustic instabilities. Given the need to develop new combustion technologies for hydrogen, it is therefore essential to accurately measure and analyze these FTFs. Employing acoustic and optical methods, we obtained the FTFs over a wide frequency range from 50 to 1000 Hz. Using the acoustic method, the FTFs are deduced from the flame transfer matrices. The FTFs exhibit a low-pass filter behavior with gains decreasing significantly above 150 Hz. Strouhal number normalization effectively collapses the FTFs across various thermal powers, bulk mass flow rates and global equivalence ratios. This result suggests that a generic flame response to acoustic perturbations exists and that the FTF can be interpolated over a range of operating conditions. This study identifies two dominant combustion modes in these hydrogen diffusion swirl flames: a diffusion-mode thin reaction layer near the nozzle and a partially premixed thicker reaction layer downstream. Phase-averaged OH* and OH-PLIF imaging revealed non-uniform transversal oscillations of the reaction zone, offering key insights into the complex swirling flow and the convective wavelength of the coherent heat release rate oscillations along these turbulent hydrogen diffusion swirl flames.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.