{"title":"探索 6061 铝合金的电化学腐蚀行为:基于有限元模拟的 TA1 钛合金","authors":"Xinyang Li, Junkai Zhang, Lei Li, Wenjia Wang, Guocheng Xu, Zhonglin Hou","doi":"10.1002/maco.202414469","DOIUrl":null,"url":null,"abstract":"Using polarization curve scanning, electrochemical impedance spectroscopy, macroscopic morphology observation, scanning electron microscope, X‐ray diffraction (XRD), and energy dispersive spectroscopy (EDS), the corrosion regulars of connectors were investigated. A galvanic corrosion simulation model of aluminum‐titanium rivets was established by electrochemical experimental parameters as boundary conditions. The results showed that the galvanic couple connection accelerated the corrosion significantly. XRD and EDS results show that the main corrosion products are Al<jats:sub>2</jats:sub>O<jats:sub>3,</jats:sub> Al(OH)<jats:sub>3</jats:sub>. The corrosion potential of riveted parts decreased from the riveting point to both sides, ranging from −0.664 to −0.655 V. The corrosion current density decreases along both sides, and the corrosion current density at the most edge is 0.0113 A/m<jats:sup>2</jats:sup>. The results of numerical simulation indicate that the model effectively predicted the galvanic corrosion behavior of aluminum‐titanium rivets.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the galvanic corrosion behavior of 6061 aluminum alloy: TA1 titanium alloy based on finite element simulation\",\"authors\":\"Xinyang Li, Junkai Zhang, Lei Li, Wenjia Wang, Guocheng Xu, Zhonglin Hou\",\"doi\":\"10.1002/maco.202414469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using polarization curve scanning, electrochemical impedance spectroscopy, macroscopic morphology observation, scanning electron microscope, X‐ray diffraction (XRD), and energy dispersive spectroscopy (EDS), the corrosion regulars of connectors were investigated. A galvanic corrosion simulation model of aluminum‐titanium rivets was established by electrochemical experimental parameters as boundary conditions. The results showed that the galvanic couple connection accelerated the corrosion significantly. XRD and EDS results show that the main corrosion products are Al<jats:sub>2</jats:sub>O<jats:sub>3,</jats:sub> Al(OH)<jats:sub>3</jats:sub>. The corrosion potential of riveted parts decreased from the riveting point to both sides, ranging from −0.664 to −0.655 V. The corrosion current density decreases along both sides, and the corrosion current density at the most edge is 0.0113 A/m<jats:sup>2</jats:sup>. The results of numerical simulation indicate that the model effectively predicted the galvanic corrosion behavior of aluminum‐titanium rivets.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202414469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202414469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用极化曲线扫描、电化学阻抗光谱、宏观形貌观察、扫描电子显微镜、X 射线衍射(XRD)和能量色散光谱(EDS)研究了连接器的腐蚀规律。以电化学实验参数为边界条件,建立了铝钛铆钉的电化学腐蚀模拟模型。结果表明,电偶连接明显加速了腐蚀。铆接部件的腐蚀电位从铆接点向两侧下降,从-0.664 V 到-0.655 V;腐蚀电流密度沿两侧减小,最边缘处的腐蚀电流密度为 0.0113 A/m2。数值模拟结果表明,该模型有效地预测了铝钛铆钉的电化学腐蚀行为。
Exploring the galvanic corrosion behavior of 6061 aluminum alloy: TA1 titanium alloy based on finite element simulation
Using polarization curve scanning, electrochemical impedance spectroscopy, macroscopic morphology observation, scanning electron microscope, X‐ray diffraction (XRD), and energy dispersive spectroscopy (EDS), the corrosion regulars of connectors were investigated. A galvanic corrosion simulation model of aluminum‐titanium rivets was established by electrochemical experimental parameters as boundary conditions. The results showed that the galvanic couple connection accelerated the corrosion significantly. XRD and EDS results show that the main corrosion products are Al2O3, Al(OH)3. The corrosion potential of riveted parts decreased from the riveting point to both sides, ranging from −0.664 to −0.655 V. The corrosion current density decreases along both sides, and the corrosion current density at the most edge is 0.0113 A/m2. The results of numerical simulation indicate that the model effectively predicted the galvanic corrosion behavior of aluminum‐titanium rivets.