Hao Zhang, Guixiang Liu, Bo Dai, Shuai Fu, Detian Wan, Yiwang Bao, Longsheng Chu, Qingguo Feng, Chunfeng Hu
{"title":"具有更强耐烧蚀性和隔热性的 Cr2AlC 陶瓷改性碳/石英纤维复合材料","authors":"Hao Zhang, Guixiang Liu, Bo Dai, Shuai Fu, Detian Wan, Yiwang Bao, Longsheng Chu, Qingguo Feng, Chunfeng Hu","doi":"10.1111/ijac.14900","DOIUrl":null,"url":null,"abstract":"Carbon‐bonded carbon fiber composites (CBCF) are renowned for their lightweight and thermal insulation properties. However, the brittleness and susceptibility to oxidation hinder the widespread application of CBCF. In this work, the carbon‐bonded carbon/quartz hybrid fiber composites (CBCQF) were prepared by pressure filtration and modified by Cr<jats:sub>2</jats:sub>AlC ceramics. The microstructure, mechanical properties, thermal insulation, and ablation behaviors were investigated. Cr<jats:sub>2</jats:sub>AlC ceramics notably enhanced the compressive strength of CBCQF in the <jats:italic>XY</jats:italic> direction and reduced the room‐temperature thermal conductivity in the <jats:italic>Z</jats:italic> direction. Most importantly, Cr<jats:sub>2</jats:sub>AlC ceramics significantly improved the ablation resistance of CBCQF. When 40% Cr<jats:sub>2</jats:sub>AlC ceramics were added, the linear and mass ablation rates of CBCQF were reduced by 38.0% and 93.2%, respectively, compared to the reference sample. Moreover, the study of ablation mechanisms revealed that the improvement in ablation resistance was primarily derived from the formation of the surface protective oxides as well as the reinforcement of oxidation resistance. Overall, this study presents a promising avenue for the application of Cr<jats:sub>2</jats:sub>AlC ceramics and the modification of fiber composites.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"84 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cr2AlC ceramic–modified carbon/quartz fiber composites with enhanced ablation resistance and thermal insulation\",\"authors\":\"Hao Zhang, Guixiang Liu, Bo Dai, Shuai Fu, Detian Wan, Yiwang Bao, Longsheng Chu, Qingguo Feng, Chunfeng Hu\",\"doi\":\"10.1111/ijac.14900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon‐bonded carbon fiber composites (CBCF) are renowned for their lightweight and thermal insulation properties. However, the brittleness and susceptibility to oxidation hinder the widespread application of CBCF. In this work, the carbon‐bonded carbon/quartz hybrid fiber composites (CBCQF) were prepared by pressure filtration and modified by Cr<jats:sub>2</jats:sub>AlC ceramics. The microstructure, mechanical properties, thermal insulation, and ablation behaviors were investigated. Cr<jats:sub>2</jats:sub>AlC ceramics notably enhanced the compressive strength of CBCQF in the <jats:italic>XY</jats:italic> direction and reduced the room‐temperature thermal conductivity in the <jats:italic>Z</jats:italic> direction. Most importantly, Cr<jats:sub>2</jats:sub>AlC ceramics significantly improved the ablation resistance of CBCQF. When 40% Cr<jats:sub>2</jats:sub>AlC ceramics were added, the linear and mass ablation rates of CBCQF were reduced by 38.0% and 93.2%, respectively, compared to the reference sample. Moreover, the study of ablation mechanisms revealed that the improvement in ablation resistance was primarily derived from the formation of the surface protective oxides as well as the reinforcement of oxidation resistance. Overall, this study presents a promising avenue for the application of Cr<jats:sub>2</jats:sub>AlC ceramics and the modification of fiber composites.\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/ijac.14900\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14900","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Cr2AlC ceramic–modified carbon/quartz fiber composites with enhanced ablation resistance and thermal insulation
Carbon‐bonded carbon fiber composites (CBCF) are renowned for their lightweight and thermal insulation properties. However, the brittleness and susceptibility to oxidation hinder the widespread application of CBCF. In this work, the carbon‐bonded carbon/quartz hybrid fiber composites (CBCQF) were prepared by pressure filtration and modified by Cr2AlC ceramics. The microstructure, mechanical properties, thermal insulation, and ablation behaviors were investigated. Cr2AlC ceramics notably enhanced the compressive strength of CBCQF in the XY direction and reduced the room‐temperature thermal conductivity in the Z direction. Most importantly, Cr2AlC ceramics significantly improved the ablation resistance of CBCQF. When 40% Cr2AlC ceramics were added, the linear and mass ablation rates of CBCQF were reduced by 38.0% and 93.2%, respectively, compared to the reference sample. Moreover, the study of ablation mechanisms revealed that the improvement in ablation resistance was primarily derived from the formation of the surface protective oxides as well as the reinforcement of oxidation resistance. Overall, this study presents a promising avenue for the application of Cr2AlC ceramics and the modification of fiber composites.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;