DEMAU:分解、探索、模拟和分析不确定性

Arthur Hoarau, Vincent Lemaire
{"title":"DEMAU:分解、探索、模拟和分析不确定性","authors":"Arthur Hoarau, Vincent Lemaire","doi":"arxiv-2409.08105","DOIUrl":null,"url":null,"abstract":"Recent research in machine learning has given rise to a flourishing\nliterature on the quantification and decomposition of model uncertainty. This\ninformation can be very useful during interactions with the learner, such as in\nactive learning or adaptive learning, and especially in uncertainty sampling.\nTo allow a simple representation of these total, epistemic (reducible) and\naleatoric (irreducible) uncertainties, we offer DEMAU, an open-source\neducational, exploratory and analytical tool allowing to visualize and explore\nseveral types of uncertainty for classification models in machine learning.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEMAU: Decompose, Explore, Model and Analyse Uncertainties\",\"authors\":\"Arthur Hoarau, Vincent Lemaire\",\"doi\":\"arxiv-2409.08105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research in machine learning has given rise to a flourishing\\nliterature on the quantification and decomposition of model uncertainty. This\\ninformation can be very useful during interactions with the learner, such as in\\nactive learning or adaptive learning, and especially in uncertainty sampling.\\nTo allow a simple representation of these total, epistemic (reducible) and\\naleatoric (irreducible) uncertainties, we offer DEMAU, an open-source\\neducational, exploratory and analytical tool allowing to visualize and explore\\nseveral types of uncertainty for classification models in machine learning.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的机器学习研究催生了大量关于模型不确定性量化和分解的文献。这些信息在与学习者的交互过程中非常有用,比如非主动学习或自适应学习,尤其是在不确定性采样中。为了能够简单地表示这些总的不确定性、认识论的(可还原的)不确定性和理论的(不可还原的)不确定性,我们提供了 DEMAU,这是一个开源的教育、探索和分析工具,可以可视化和探索机器学习中分类模型的各种类型的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEMAU: Decompose, Explore, Model and Analyse Uncertainties
Recent research in machine learning has given rise to a flourishing literature on the quantification and decomposition of model uncertainty. This information can be very useful during interactions with the learner, such as in active learning or adaptive learning, and especially in uncertainty sampling. To allow a simple representation of these total, epistemic (reducible) and aleatoric (irreducible) uncertainties, we offer DEMAU, an open-source educational, exploratory and analytical tool allowing to visualize and explore several types of uncertainty for classification models in machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1