通过多视角特征融合进行网络异常流量检测

Song Hao, Wentao Fu, Xuanze Chen, Chengxiang Jin, Jiajun Zhou, Shanqing Yu, Qi Xuan
{"title":"通过多视角特征融合进行网络异常流量检测","authors":"Song Hao, Wentao Fu, Xuanze Chen, Chengxiang Jin, Jiajun Zhou, Shanqing Yu, Qi Xuan","doi":"arxiv-2409.08020","DOIUrl":null,"url":null,"abstract":"Traditional anomalous traffic detection methods are based on single-view\nanalysis, which has obvious limitations in dealing with complex attacks and\nencrypted communications. In this regard, we propose a Multi-view Feature\nFusion (MuFF) method for network anomaly traffic detection. MuFF models the\ntemporal and interactive relationships of packets in network traffic based on\nthe temporal and interactive viewpoints respectively. It learns temporal and\ninteractive features. These features are then fused from different perspectives\nfor anomaly traffic detection. Extensive experiments on six real traffic\ndatasets show that MuFF has excellent performance in network anomalous traffic\ndetection, which makes up for the shortcomings of detection under a single\nperspective.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Anomaly Traffic Detection via Multi-view Feature Fusion\",\"authors\":\"Song Hao, Wentao Fu, Xuanze Chen, Chengxiang Jin, Jiajun Zhou, Shanqing Yu, Qi Xuan\",\"doi\":\"arxiv-2409.08020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional anomalous traffic detection methods are based on single-view\\nanalysis, which has obvious limitations in dealing with complex attacks and\\nencrypted communications. In this regard, we propose a Multi-view Feature\\nFusion (MuFF) method for network anomaly traffic detection. MuFF models the\\ntemporal and interactive relationships of packets in network traffic based on\\nthe temporal and interactive viewpoints respectively. It learns temporal and\\ninteractive features. These features are then fused from different perspectives\\nfor anomaly traffic detection. Extensive experiments on six real traffic\\ndatasets show that MuFF has excellent performance in network anomalous traffic\\ndetection, which makes up for the shortcomings of detection under a single\\nperspective.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的异常流量检测方法基于单视角分析,在处理复杂攻击和加密通信时具有明显的局限性。为此,我们提出了一种用于网络异常流量检测的多视角特征融合(Multi-view FeatureFusion,MuFF)方法。MuFF 分别基于时间视角和交互视角对网络流量中数据包的时间关系和交互关系进行建模。它可以学习时间和交互特征。然后从不同角度融合这些特征,进行异常流量检测。在六个真实流量数据集上进行的大量实验表明,MuFF 在网络异常流量检测中表现出色,弥补了单一视角检测的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Anomaly Traffic Detection via Multi-view Feature Fusion
Traditional anomalous traffic detection methods are based on single-view analysis, which has obvious limitations in dealing with complex attacks and encrypted communications. In this regard, we propose a Multi-view Feature Fusion (MuFF) method for network anomaly traffic detection. MuFF models the temporal and interactive relationships of packets in network traffic based on the temporal and interactive viewpoints respectively. It learns temporal and interactive features. These features are then fused from different perspectives for anomaly traffic detection. Extensive experiments on six real traffic datasets show that MuFF has excellent performance in network anomalous traffic detection, which makes up for the shortcomings of detection under a single perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1