通过正序原型分析建立人类反应模型

Anna Emilie J. Wedenborg, Michael Alexander Harborg, Andreas Bigom, Oliver Elmgreen, Marcus Presutti, Andreas Råskov, Fumiko Kano Glückstad, Mikkel Schmidt, Morten Mørup
{"title":"通过正序原型分析建立人类反应模型","authors":"Anna Emilie J. Wedenborg, Michael Alexander Harborg, Andreas Bigom, Oliver Elmgreen, Marcus Presutti, Andreas Råskov, Fumiko Kano Glückstad, Mikkel Schmidt, Morten Mørup","doi":"arxiv-2409.07934","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel framework for Archetypal Analysis (AA) tailored\nto ordinal data, particularly from questionnaires. Unlike existing methods, the\nproposed method, Ordinal Archetypal Analysis (OAA), bypasses the two-step\nprocess of transforming ordinal data into continuous scales and operates\ndirectly on the ordinal data. We extend traditional AA methods to handle the\nsubjective nature of questionnaire-based data, acknowledging individual\ndifferences in scale perception. We introduce the Response Bias Ordinal\nArchetypal Analysis (RBOAA), which learns individualized scales for each\nsubject during optimization. The effectiveness of these methods is demonstrated\non synthetic data and the European Social Survey dataset, highlighting their\npotential to provide deeper insights into human behavior and perception. The\nstudy underscores the importance of considering response bias in cross-national\nresearch and offers a principled approach to analyzing ordinal data through\nArchetypal Analysis.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Human Responses by Ordinal Archetypal Analysis\",\"authors\":\"Anna Emilie J. Wedenborg, Michael Alexander Harborg, Andreas Bigom, Oliver Elmgreen, Marcus Presutti, Andreas Råskov, Fumiko Kano Glückstad, Mikkel Schmidt, Morten Mørup\",\"doi\":\"arxiv-2409.07934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel framework for Archetypal Analysis (AA) tailored\\nto ordinal data, particularly from questionnaires. Unlike existing methods, the\\nproposed method, Ordinal Archetypal Analysis (OAA), bypasses the two-step\\nprocess of transforming ordinal data into continuous scales and operates\\ndirectly on the ordinal data. We extend traditional AA methods to handle the\\nsubjective nature of questionnaire-based data, acknowledging individual\\ndifferences in scale perception. We introduce the Response Bias Ordinal\\nArchetypal Analysis (RBOAA), which learns individualized scales for each\\nsubject during optimization. The effectiveness of these methods is demonstrated\\non synthetic data and the European Social Survey dataset, highlighting their\\npotential to provide deeper insights into human behavior and perception. The\\nstudy underscores the importance of considering response bias in cross-national\\nresearch and offers a principled approach to analyzing ordinal data through\\nArchetypal Analysis.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖的原型分析(AA)框架,专门针对序数数据,尤其是来自问卷调查的数据。与现有方法不同,本文提出的方法--序数原型分析(OAA)--绕过了将序数数据转换为连续量表的两步过程,直接对序数数据进行操作。我们扩展了传统的 AA 方法,以处理基于问卷的数据的主观性,承认量表感知的个体差异。我们引入了响应偏差序数弧形分析法(RBOAA),它能在优化过程中为每个受试者学习个性化的量表。我们在合成数据和欧洲社会调查数据集上证明了这些方法的有效性,从而凸显了它们在深入了解人类行为和感知方面的潜力。该研究强调了在跨国研究中考虑反应偏差的重要性,并提供了一种通过原型分析法分析序数数据的原则性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Human Responses by Ordinal Archetypal Analysis
This paper introduces a novel framework for Archetypal Analysis (AA) tailored to ordinal data, particularly from questionnaires. Unlike existing methods, the proposed method, Ordinal Archetypal Analysis (OAA), bypasses the two-step process of transforming ordinal data into continuous scales and operates directly on the ordinal data. We extend traditional AA methods to handle the subjective nature of questionnaire-based data, acknowledging individual differences in scale perception. We introduce the Response Bias Ordinal Archetypal Analysis (RBOAA), which learns individualized scales for each subject during optimization. The effectiveness of these methods is demonstrated on synthetic data and the European Social Survey dataset, highlighting their potential to provide deeper insights into human behavior and perception. The study underscores the importance of considering response bias in cross-national research and offers a principled approach to analyzing ordinal data through Archetypal Analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1