重新想象线性探测:迁移学习中的柯尔莫哥洛夫-阿诺德网络

Sheng Shen, Rabih Younes
{"title":"重新想象线性探测:迁移学习中的柯尔莫哥洛夫-阿诺德网络","authors":"Sheng Shen, Rabih Younes","doi":"arxiv-2409.07763","DOIUrl":null,"url":null,"abstract":"This paper introduces Kolmogorov-Arnold Networks (KAN) as an enhancement to\nthe traditional linear probing method in transfer learning. Linear probing,\noften applied to the final layer of pre-trained models, is limited by its\ninability to model complex relationships in data. To address this, we propose\nsubstituting the linear probing layer with KAN, which leverages spline-based\nrepresentations to approximate intricate functions. In this study, we integrate\nKAN with a ResNet-50 model pre-trained on ImageNet and evaluate its performance\non the CIFAR-10 dataset. We perform a systematic hyperparameter search,\nfocusing on grid size and spline degree (k), to optimize KAN's flexibility and\naccuracy. Our results demonstrate that KAN consistently outperforms traditional\nlinear probing, achieving significant improvements in accuracy and\ngeneralization across a range of configurations. These findings indicate that\nKAN offers a more powerful and adaptable alternative to conventional linear\nprobing techniques in transfer learning.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reimagining Linear Probing: Kolmogorov-Arnold Networks in Transfer Learning\",\"authors\":\"Sheng Shen, Rabih Younes\",\"doi\":\"arxiv-2409.07763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Kolmogorov-Arnold Networks (KAN) as an enhancement to\\nthe traditional linear probing method in transfer learning. Linear probing,\\noften applied to the final layer of pre-trained models, is limited by its\\ninability to model complex relationships in data. To address this, we propose\\nsubstituting the linear probing layer with KAN, which leverages spline-based\\nrepresentations to approximate intricate functions. In this study, we integrate\\nKAN with a ResNet-50 model pre-trained on ImageNet and evaluate its performance\\non the CIFAR-10 dataset. We perform a systematic hyperparameter search,\\nfocusing on grid size and spline degree (k), to optimize KAN's flexibility and\\naccuracy. Our results demonstrate that KAN consistently outperforms traditional\\nlinear probing, achieving significant improvements in accuracy and\\ngeneralization across a range of configurations. These findings indicate that\\nKAN offers a more powerful and adaptable alternative to conventional linear\\nprobing techniques in transfer learning.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 Kolmogorov-Arnold 网络(KAN),作为迁移学习中传统线性探测方法的一种增强。线性探测通常应用于预训练模型的最后一层,但因其无法对数据中的复杂关系建模而受到限制。为了解决这个问题,我们建议用 KAN 代替线性探测层,KAN 利用基于样条的表示来逼近复杂的函数。在本研究中,我们将 KAN 与在 ImageNet 上预先训练好的 ResNet-50 模型进行了整合,并在 CIFAR-10 数据集上对其性能进行了评估。我们进行了系统的超参数搜索,重点关注网格大小和样条线度(k),以优化 KAN 的灵活性和准确性。我们的结果表明,KAN 的性能始终优于传统的线性探测,在各种配置下都能显著提高精度和泛化能力。这些发现表明,在迁移学习中,KAN 提供了一种比传统线性探测技术更强大、适应性更强的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reimagining Linear Probing: Kolmogorov-Arnold Networks in Transfer Learning
This paper introduces Kolmogorov-Arnold Networks (KAN) as an enhancement to the traditional linear probing method in transfer learning. Linear probing, often applied to the final layer of pre-trained models, is limited by its inability to model complex relationships in data. To address this, we propose substituting the linear probing layer with KAN, which leverages spline-based representations to approximate intricate functions. In this study, we integrate KAN with a ResNet-50 model pre-trained on ImageNet and evaluate its performance on the CIFAR-10 dataset. We perform a systematic hyperparameter search, focusing on grid size and spline degree (k), to optimize KAN's flexibility and accuracy. Our results demonstrate that KAN consistently outperforms traditional linear probing, achieving significant improvements in accuracy and generalization across a range of configurations. These findings indicate that KAN offers a more powerful and adaptable alternative to conventional linear probing techniques in transfer learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1