大语言模型是模式匹配器:使用 ChatGPT 编辑半结构化和结构化文档

Irene Weber
{"title":"大语言模型是模式匹配器:使用 ChatGPT 编辑半结构化和结构化文档","authors":"Irene Weber","doi":"arxiv-2409.07732","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) offer numerous applications, the full extent of\nwhich is not yet understood. This paper investigates if LLMs can be applied for\nediting structured and semi-structured documents with minimal effort. Using a\nqualitative research approach, we conduct two case studies with ChatGPT and\nthoroughly analyze the results. Our experiments indicate that LLMs can\neffectively edit structured and semi-structured documents when provided with\nbasic, straightforward prompts. ChatGPT demonstrates a strong ability to\nrecognize and process the structure of annotated documents. This suggests that\nexplicitly structuring tasks and data in prompts might enhance an LLM's ability\nto understand and solve tasks. Furthermore, the experiments also reveal\nimpressive pattern matching skills in ChatGPT. This observation deserves\nfurther investigation, as it may contribute to understanding the processes\nleading to hallucinations in LLMs.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Models are Pattern Matchers: Editing Semi-Structured and Structured Documents with ChatGPT\",\"authors\":\"Irene Weber\",\"doi\":\"arxiv-2409.07732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) offer numerous applications, the full extent of\\nwhich is not yet understood. This paper investigates if LLMs can be applied for\\nediting structured and semi-structured documents with minimal effort. Using a\\nqualitative research approach, we conduct two case studies with ChatGPT and\\nthoroughly analyze the results. Our experiments indicate that LLMs can\\neffectively edit structured and semi-structured documents when provided with\\nbasic, straightforward prompts. ChatGPT demonstrates a strong ability to\\nrecognize and process the structure of annotated documents. This suggests that\\nexplicitly structuring tasks and data in prompts might enhance an LLM's ability\\nto understand and solve tasks. Furthermore, the experiments also reveal\\nimpressive pattern matching skills in ChatGPT. This observation deserves\\nfurther investigation, as it may contribute to understanding the processes\\nleading to hallucinations in LLMs.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)的应用领域非常广泛,但人们还不了解其全部范围。本文研究了 LLM 是否能在编辑结构化和半结构化文档时以最小的工作量得到应用。我们采用定量研究方法,使用 ChatGPT 进行了两项案例研究,并对结果进行了全面分析。我们的实验表明,当提供简单明了的提示时,LLM 可以有效地编辑结构化和半结构化文档。ChatGPT 展示了识别和处理注释文档结构的强大能力。这表明,在提示中明确提出任务和数据的结构可能会提高 LLM 理解和解决任务的能力。此外,实验还揭示了 ChatGPT 令人印象深刻的模式匹配技能。这一观察结果值得进一步研究,因为它可能有助于理解导致 LLM 产生幻觉的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Language Models are Pattern Matchers: Editing Semi-Structured and Structured Documents with ChatGPT
Large Language Models (LLMs) offer numerous applications, the full extent of which is not yet understood. This paper investigates if LLMs can be applied for editing structured and semi-structured documents with minimal effort. Using a qualitative research approach, we conduct two case studies with ChatGPT and thoroughly analyze the results. Our experiments indicate that LLMs can effectively edit structured and semi-structured documents when provided with basic, straightforward prompts. ChatGPT demonstrates a strong ability to recognize and process the structure of annotated documents. This suggests that explicitly structuring tasks and data in prompts might enhance an LLM's ability to understand and solve tasks. Furthermore, the experiments also reveal impressive pattern matching skills in ChatGPT. This observation deserves further investigation, as it may contribute to understanding the processes leading to hallucinations in LLMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1