利用光学雨量计估算降雨的能量特征

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2024-09-05 DOI:10.1134/S1024856024700593
V. V. Kalchikhin, A. A. Kobzev, A. A. Tikhomirov
{"title":"利用光学雨量计估算降雨的能量特征","authors":"V. V. Kalchikhin,&nbsp;A. A. Kobzev,&nbsp;A. A. Tikhomirov","doi":"10.1134/S1024856024700593","DOIUrl":null,"url":null,"abstract":"<p>Tasks which require information about energy characteristics of rains and methods for acquiring this information are briefly reviewed. A technique is suggested for estimating the kinetic energy transferred by hydrometeors based on microstructural characteristics of rainfall obtained with an OPTIOS optical precipitation gage. The technique is tested with measurement data received during a heavy rainfall occurred in Tomsk on July 22, 2023. The influence of different microstructural parameters on the amount of kinetic energy brought by raindrops to the underlying surface is analyzed. The results are compared with the values obtained by simplified methods. It is concluded that the capabilities of the optical precipitation gage make it a useful tool for solving tasks where accurate assessments of rainfall energy characteristics are required.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Energy Characteristics of Rainfall with an Optical Rain Gage\",\"authors\":\"V. V. Kalchikhin,&nbsp;A. A. Kobzev,&nbsp;A. A. Tikhomirov\",\"doi\":\"10.1134/S1024856024700593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tasks which require information about energy characteristics of rains and methods for acquiring this information are briefly reviewed. A technique is suggested for estimating the kinetic energy transferred by hydrometeors based on microstructural characteristics of rainfall obtained with an OPTIOS optical precipitation gage. The technique is tested with measurement data received during a heavy rainfall occurred in Tomsk on July 22, 2023. The influence of different microstructural parameters on the amount of kinetic energy brought by raindrops to the underlying surface is analyzed. The results are compared with the values obtained by simplified methods. It is concluded that the capabilities of the optical precipitation gage make it a useful tool for solving tasks where accurate assessments of rainfall energy characteristics are required.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要简要回顾了需要有关降雨能量特征信息的任务以及获取这些信息的方法。根据 OPTIOS 光学降水测量仪获得的降雨微观结构特征,提出了一种估算水介质传递动能的技术。该技术利用 2023 年 7 月 22 日托木斯克暴雨期间获得的测量数据进行了测试。分析了不同微观结构参数对雨滴带入下层表面的动能的影响。分析结果与简化方法得出的数值进行了比较。结论是,光学降水测量仪的功能使其成为解决需要准确评估降雨能量特征的任务的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Energy Characteristics of Rainfall with an Optical Rain Gage

Tasks which require information about energy characteristics of rains and methods for acquiring this information are briefly reviewed. A technique is suggested for estimating the kinetic energy transferred by hydrometeors based on microstructural characteristics of rainfall obtained with an OPTIOS optical precipitation gage. The technique is tested with measurement data received during a heavy rainfall occurred in Tomsk on July 22, 2023. The influence of different microstructural parameters on the amount of kinetic energy brought by raindrops to the underlying surface is analyzed. The results are compared with the values obtained by simplified methods. It is concluded that the capabilities of the optical precipitation gage make it a useful tool for solving tasks where accurate assessments of rainfall energy characteristics are required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
The Superresonance: The Discovery That Was Not Done More Than One Hundred Years Ago Spatial Distribution of Potential Sources of Carbonaceous Aerosols in Central Siberia The Effect of Electronic Halos on the Scattering Properties of Solid Particles in the Microwave Range Aerosol Sounding of the Troposphere and Stratosphere by Lidar and Aerological Technologies Optical and Geometrical Characteristics of High-Level Clouds from the 2009–2023 Data on Laser Polarization Sensing in Tomsk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1